
V1.3 19.06.200

Issued: 19.06.2007 Version: 1.3

KUKA Robot Group

Communication

CREAD/CWRITE
Programming CREAD/CWRITE and related statements

For KUKA System Software (KSS) 5.4, 5.5, 7.0

© Copyright 2007

KUKA Roboter GmbH
Zugspitzstraße 140
D-86165 Augsburg
Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without
the express permission of the KUKA ROBOT GROUP.

Other functions not described in this documentation may be operable in the controller. The user has no
claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software de-
scribed. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guaran-
tee total conformity. The information in this documentation is checked on a regular basis, however, and
necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

KIM-PS4-DOC

V0.4 22.03.2006 pub de

CREAD/CWRITE

2 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

Contents
1 Introduction .. 5

1.1 Target group ... 5
1.2 Robot system documentation ... 5
1.3 Representation of warnings and notes ... 5

2 Description of functions .. 7

3 Communication channels ... 9

3.1 Communication via a serial interface .. 9
3.2 Communication via external modules ... 9
3.3 Communication via the command channel ... 10

4 Configuring the serial interface .. 11

4.1 Overview of configuration of the serial interface ... 11
4.2 Assigning the serial interface to the operating system ... 11
4.3 Configuring the serial interface ... 11
4.4 Configuring the 3964R procedure ... 12
4.5 Configuring the Xon/Xoff protocol ... 13
4.6 Displaying sent/received data with Telnet .. 14
4.7 3964R procedure .. 15
4.7.1 3964R procedure sends data .. 15
4.7.2 3964R procedure receives data ... 16
4.7.3 Initialization conflict .. 17

5 Configuring the external modules .. 19

6 Programming .. 21

6.1 Programming overview ... 21
6.2 Symbols and fonts .. 21
6.3 CHANNEL ... 22
6.4 COPEN ... 22
6.5 CREAD ... 23
6.6 CWRITE .. 25
6.7 CCLOSE ... 27
6.8 CIOCTL ... 27
6.9 SREAD ... 28
6.10 SWRITE .. 29
6.11 CAST_TO ... 30
6.12 CAST_FROM .. 32
6.13 Permissible data types in CAST statements ... 32
6.14 "State" variable ... 33
6.14.1 Structure type STATE_T .. 33
6.14.2 Return values for the variable "RET1" ... 34
6.15 "Format" variable .. 35
6.15.1 "Format" variable for CREAD/SREAD ... 35
6.15.2 "Format" variable for CWRITE/SWRITE .. 36
6.15.3 Conversion characters ... 37

Contents
3 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
6.15.4 Which format for which variable? ... 38
6.15.5 Conversion examples .. 40

7 Example programs ... 41

7.1 Serial interface: sending and receiving position data ... 41
7.1.1 Sending position data .. 41
7.1.2 Receiving position data .. 41
7.2 Serial interface: outputting the date .. 42
7.3 External module: calling a function by means of LD_EXT_FCT 44
7.4 Command channel: starting, stopping and deselecting a program 44
7.5 Combining CREAD/CWRITE with CAST statements ... 44

8 Appendix ... 47

8.1 File paths .. 47
8.2 Hardware requirements .. 47

9 KUKA Service ... 49

9.1 Requesting support ... 49
9.2 KUKA Customer Support .. 49

Index .. 55
4 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

1. Introduction
1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:

Advanced KRL programming skills
Advanced knowledge of the robot controller system
Advanced system knowledge of the controllers with which the KR C con-
troller communicates

1.2 Robot system documentation

The robot system documentation consists of the following parts:

Operating instructions for the robot
Operating instructions for the robot controller
Operating and programming instructions for the KUKA System Software
Documentation relating to options and accessories

Each of these sets of instructions is a separate document.

1.3 Representation of warnings and notes

Safety Warnings marked with this pictogram are relevant to safety and must be ob-
served.

Notes Notes marked with this pictogram contain tips to make your work easier or ref-
erences to further information.

For optimal use of our products, we recommend that our customers take part
in a course of training at KUKA College. Information about the training pro-
gram can be found at www.kuka.com or can be obtained directly from our
subsidiaries.

Danger!
This warning means that death, severe physical injury or substantial material
damage will occur, if no precautions are taken.

Warning!
This warning means that death, severe physical injury or substantial material
damage may occur, if no precautions are taken.

Caution!
This warning means that minor physical injuries or minor material damage
may occur, if no precautions are taken.

Tips to make your work easier or references to further information.
5 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

www.kuka.com

CREAD/CWRITE
6 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

2. Description of functions
2 Description of functions

Functions CREAD and CWRITE are flexible statements which can be used to communi-
cate between the robot controller and another controller. They can also be
used for communication within the robot controller.

CREAD reads data from a channel. CWRITE writes data to a channel.

CREAD/CWRITE can be used for communication via the following channels:

Serial interfaces
 (>>> 3.1 "Communication via a serial interface" page 9)
External modules
 (>>> 3.2 "Communication via external modules" page 9)
Communication via external modules is not possible in KSS 7.0.
Command channel (CWRITE only)
 (>>> 3.3 "Communication via the command channel" page 10)

Example The robot controller receives position data from another controller (e.g. from a
camera system) at the serial interface. The robot controller uses CREAD to
read these position data from the serial interface.
7 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
8 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

3. Communication channels
3 Communication channels

3.1 Communication via a serial interface

Description The robot controller can use CREAD/CWRITE to communicate with another
controller via a serial interface. The data are transferred in real time.

The controllers with which communication is carried out are generally intelli-
gent systems. Examples:

Camera systems, e.g. Perceptron
Other robot controllers
Intelligent sensor systems, e.g. force/torque sensors

Configuration The serial interface must be configured for communication with CREAD/
CWRITE.

 (>>> 4.1 "Overview of configuration of the serial interface" page 11)

Overview

3.2 Communication via external modules

Description External modules are drivers for interfaces, e.g. for TCP/IP, for Ethernet inter-
faces or for serial interfaces. An external module is always implemented out-
side the robot controller as an O file and then integrated into the robot
controller.

External modules can be used both for communication within the robot con-
troller and for communication with other controllers.

There are 2 types of external modules:

LD_EXT_OBJ
This type can be used to exchange data by means of CREAD and
CWRITE.
LD_EXT_FCT
This type contains functions. The functions are called via CWRITE.
LD_EXT_FCT can return function parameters to CWRITE. (CREAD is not
possible with this type.)

Fig. 3-1: Communication via a serial interface

Communication via external modules is not possible in KSS 7.0.

The implementation and integration of external modules is not covered by
this documentation. This documentation deals with the use of CREAD/
CWRITE to communicate with integrated external modules.
9 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
The robot controller can communicate with a maximum of 4 external modules
(2 per type) simultaneously.

Configuration The external modules must be configured for communication with CREAD/
CWRITE.

 (>>> 5 "Configuring the external modules" page 19)

Overview

3.3 Communication via the command channel

Description CWRITE can transfer statements to a program interpreter via the command
channel. Example: start a program via the command channel with RUN and
stop it with STOP.

CREAD is not relevant for the command channel.

Configuration The command channel does not need to be configured for communication with
CWRITE.

Overview

Fig. 3-2: Communication via external modules

Fig. 3-3: Communication via the command channel
10 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

4. Configuring the serial interface
4 Configuring the serial interface

4.1 Overview of configuration of the serial interface

4.2 Assigning the serial interface to the operating system

Description The serial interface must be assigned to the VxWorks operating system so that
it can be used for data transmission with CREAD/CWRITE.

KSS 5.4 and 5.5:
Only COM3 is available for data transmission with CREAD/CWRITE. By
default, COM3 is assigned to VxWorks.
KSS 7.0:
Only COM2 is available for data transmission with CREAD/CWRITE. By
default, COM2 is assigned to VxWorks.

File KSS 5.4 and 5.5:
The assignment of the serial interface to the operating system is defined
in the file HW_INF.INI.

KSS 7.0:
The assignment of the serial interface to the operating system is defined,
by default, in KRC.XML. The user does not need to make any changes.

4.3 Configuring the serial interface

File The serial interface is configured in the file SERIAL.INI.

Step Description
1 Check the assignment of the serial interface.

Note: This step is not necessary in KSS 7.0.

 (>>> 4.2 "Assigning the serial interface to the operating
system" page 11)

2 Configure the serial interface. A transmission procedure
must be selected.

 (>>> 4.3 "Configuring the serial interface" page 11)
3 Configure the transmission procedure selected in step 2.

Either (>>> 4.4 "Configuring the 3964R procedure"
page 12)

Or (>>> 4.5 "Configuring the Xon/Xoff protocol" page 13)
4 If the transmitted data are to be displayed using Telnet:

activate Telnet.

 (>>> 4.6 "Displaying sent/received data with Telnet"
page 14)

5 Reboot the robot controller with a cold start.

[SERIAL]
;ENABLE: COM is accessible by robot (vxWorks)
;DISABLE: COM is accessible by WinXP
;CONSOLE: for developer only
COM3=ENABLE ;[ENABLE, DISABLE, CONSOLE]
11 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Parameter

4.4 Configuring the 3964R procedure

File The 3964R procedure is configured in the file SERIAL.INI.

[COM3]
BAUD=9600
CHAR_LEN=8 ; 7,8
STOP_BIT=1 ; 1,2 at time not changeable
PARITY=2 ; EVEN=2, ODD=1, NONE=0
PROC=1 ; 3964R=1, SRVT=2, WTC=3, XONXOFF=4

Parameter Description
BAUD Data transmission speed in baud (= bits per second).

Default: 9 600 baud.

For the robot controller to be able to communicate with
another controller via the serial interface, the baud rate
must be the same for both controllers.

Permissible baud rates in the KR C:

57 600
38 400
19 200
9 600
4 800
2 400
1 200
600
300
150
110

CHAR_LEN Number of data bits. Communication is generally in
bytes, so the number is usually 8.

STOP_BIT Number of stop bits. Currently invariably set to 1.
PARITY Parity. This parameter is only relevant if the protocol

3964R is selected for the parameter PROC.

0 = the parity is not taken into consideration.
1 = odd parity, i.e. the number of bits including the par-
ity bit is odd.
2 = even parity, i.e. the number of bits including the
parity bit is even.

PROC Transmission procedure. The protocol 3964R is generally
used for the transmission procedure. If the controller with
which the robot controller is communicating is unable to
cope with the 3964R procedure, the simpler Xon/Xoff
protocol can be used.

SRVT and WTC protocols: only for internal use by KUKA.

[3964R]
CHAR_TIMEOUT=500 ; msec
QUITT_TIMEOUT=500 ; msec
TRANS_TIMEOUT=500 ; msec
MAX_TX_BUFFER=2 ; 1...5
MAX_RX_BUFFER=10 ; 1...20
SIZE_RX_BUFFER=100 ; 1...2048
PROTOCOL_PRIOR=1 ; HIGH=1, LOW=0
12 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

4. Configuring the serial interface
Parameter

4.5 Configuring the Xon/Xoff protocol

Description The Xon/Xoff protocol is a common handshake procedure. Handshake proce-
dures are also known as low-level protocols. They stop the transmitter of the
partner controller if the receive buffer is threatening to overflow.

File The Xon/Xoff protocol is configured in the file SERIAL.INI.

Parameter

Parameter Description
CHAR_TIMEOUT The maximum interval between two characters
QUITT_TIMEOUT The maximum wait time of the robot controller

for the character DLE
TRANS_TIMEOUT This is the maximum length of time the robot

controller waits, after receiving an incorrect BCC,
for the other controller to establish a new con-
nection.

MAX_TX_BUFFER Maximum number of output buffers
MAX_RX_BUFFER Maximum number of receive buffers
SIZE_RX_BUFFER The size of a receive buffer in bytes

(It is not necessary to define a size for the output
buffers, as the size automatically adapts to the
contents.)

PROTOCOL_PRIOR Priority. The priority serves to avoid initialization
conflicts.

[XONXOFF]
CHAR_TIMEOUT=50 ;msec Timout after last received character
CHAR_TIMEOUT=50 ;to recognize the end of telegram
MAX_TX_BUFFER=2 ;1...5
MAX_RX_BUFFER=2 ;1...20
SIZE_RX_BUFFER=100 ;1...2048 longest expected telegram length + 15
characters
XON_VAL=17 ;0...255 XON character (decimal)
XOFF_VAL=19 ;0...255 XOFF character (decimal)
 ;if NON_VAL=0 and XOFF_VAL=0 then XON/XOFF-protocol
 ;is disabled (pure serial communication)
DSR_LINE=0 ;0=DSR line not connected, 1=DSR line must be high

Parameter Description
CHAR_TIMEOUT The maximum interval between two characters.

If this interval is exceeded, the Xon/Xoff protocol
interprets this as the end of the data block.

MAX_TX_BUFFER Maximum number of output buffers
MAX_RX_BUFFER Maximum number of receive buffers
SIZE_RX_BUFFER The size of a receive buffer in bytes. The size

should be defined as the length of the longest
expected data block plus 15 characters. The
additional 15 characters are to account for the
delay that arises before the transmitter reacts to
the signal from the receiver warning that its
receive buffer is threatening to overflow.

(It is not necessary to define a size for the output
buffers, as the size automatically adapts to the
contents.)
13 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
4.6 Displaying sent/received data with Telnet

Data that have been sent and received via a serial interface can be displayed
using Telnet.

Precondition TESTPRINT must be set to 1 in the file SERIAL.INI:

Procedure 1. Click on the Windows Start button.
2. Select the menu option Run....
3. In the Open box, enter "telnet 192.0.1.1".
4. Click on OK.

The Telnet window is opened. It displays the values that are sent and re-
ceived.

Example The Telnet window indicates that the COM3 port has been used to send the
integer value 54321 and receive the integer value 12321 (TX = output buffer,
RX = receive buffer).

XON_VAL

XOFF_VAL

XOFF_VAL: This character is used by the trans-
mitter to signal that it must interrupt the transmis-
sion because the receive buffer is threatening to
overflow.

XON_VAL: This character is used by the trans-
mitter to signal that it can resume transmission
once again.

Note: The Xon/Xoff procedure can only be used
if the XON_VAL and XOFF_VAL characters are
not contained in the data to be transmitted!

If XON_VAL and XOFF_VAL are both set to 0,
the Xon/Xoff protocol is deactivated. The data
are then transmitted without being checked by
the receive buffer.

DSR_LINE The DSR line is a hardware line that can be used
in the communication between the controllers.
This line is not always present – this depends on
the specific case.

If the DSR line is present, data can only be
exchanged if its state is "high".

0 = The robot controller does not monitor the
state of the DSR line.
This option must be selected if the DSR line
is not present.
1 = The robot controller monitors the state of
the DSR line.

Parameter Description

[TEST]
...
TESTPRINT=1

-> SER OPEN
SER [3]-TX: 54321
SER [3]-RX: 12321
14 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

4. Configuring the serial interface
4.7 3964R procedure

The 3964R procedure is an asynchronous, bit-serial transmission procedure.

When the procedure receives data from the partner controller, it deposits them
in receive buffers (RX_BUFFER) and passes the buffers on to the interpreter
for further processing. Data to be sent to the partner controller lie ready in out-
put buffers (TX_BUFFER). The interpreter forwards the data to the procedure
which sends them to the partner controller.

The procedure repeats transmissions, if required, and signals errors to the in-
terpreter.

The control characters for the 3964R procedure are taken from the DIN 66003
standard for 7-bit code. The transmission itself, however, uses an 8-bit char-
acter length with bit 7=0. For the purposes of data protection, a block check
character (BCC) is sent at the end of each data block.

The block check character, BCC, is the block parity of the information bits of
all data bytes in a transmitted or received block (EXCLUSIVE OR operation).
This block parity is defined in the PARITY section of the file SERIAL.INI during
configuration of the serial interface (>>> 4.3 "Configuring the serial interface"
page 11). It begins with the first user data byte after the connection has been
made and ends after the DLE ETX character on termination of the connection.

4.7.1 3964R procedure sends data

Overview

Description Error-free process:

1. The 3964R procedure sends the character STX in order to make a con-
nection.

2. The partner controller responds within the acknowledgement delay time
QUITT_TIMEOUT with the character DLE. The connection is established
and the procedure commences transmission.

3. The data from the output buffer are sent at the defined transmission speed
to the partner controller.
The partner controller monitors the interval between two characters. This
interval must not exceed the character delay time CHAR_TIMEOUT con-
figured in the robot controller.
Each DLE character contained in the output buffer is sent twice. Reason:
DLE is actually a control character and in this way it is recognized by the
receiving controller as an information character.

Robot controller Partner controller
STX ----->

<----- DLE
Character 1 ----->
Character 2 ----->

… ----->
… ----->

Character n ----->
DLE ----->
ETX ----->
BCC ----->

<----- DLE
15 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
4. When the output buffer is empty, the procedure sends the characters DLE,
ETX and BCC (in this order) as an end identifier and waits for an acknowl-
edgement character.

5. The partner controller sends the character DLE within the acknowledge-
ment delay time QUITT_TIMEOUT. The data block has been received
without errors and the transmission is terminated.

Error establishing connection:

In the following cases, no connection is made after the 3964R procedure has
sent the character STX:

The partner controller responds with the character NAK.
The partner controller responds with any character or character string oth-
er than DLE.
QUITT_TIMEOUT elapses without a reaction from the partner controller.

After 6 failed attempts to make a connection, the procedure cancels the proc-
ess, signals the error to the interpreter and sends the character NAK to the
partner controller.

Error receiving:

In the following cases, the data block from the partner controller has not been
received correctly:

Once the procedure has sent the end identifier DLE, ETX, BCC, the part-
ner controller responds with the character NAK.
Once the procedure has sent the end identifier DLE, ETX, BCC, the part-
ner controller responds with any character or character string other than
DLE.
Once the procedure has sent the end identifier DLE, ETX, BCC, the ac-
knowledgement delay time QUITT_TIMEOUT elapses without a reaction
from the partner controller.

After 6 failed attempts to send the data block, the procedure cancels the proc-
ess, signals the error to the interpreter and sends the character NAK to the
partner controller.

Partner controller sends NAK:

If the partner controller sends the character NAK while a transmission is in
progress, the procedure terminates the block and recommences connection.
In the case of a character other than NAK, the procedure waits first for the
character delay time CHAR_TIMEOUT to elapse. It then sends the character
NAK to bring the partner controller to the rest state. The procedure then re-
commences connection with STX.

4.7.2 3964R procedure receives data

Error-free process:

When there is no transmission request to process, the 3964R procedure waits
in the rest state for a connection to be established by the partner controller.
The establishment of the connection is initiated when the procedure receives
the character STX from the partner controller.

1. The procedure receives the character STX from the partner controller.
2. If there is an empty receive buffer available to the procedure, it responds

with the character DLE.
3. The procedure receives characters and stores them in the receive buffer.

If the procedure receives the character DLE twice in succession, it only
writes it to the receive buffer once. Reason: DLE is actually a control char-
16 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

4. Configuring the serial interface
acter. The partner controller sends DLE twice so that it is can be identified
by the procedure as a character.
When the receive buffer is full, the procedure transfers the full buffer to the
interpreter before the partner controller terminates the connection. Any
further characters it receives are deposited in a further receive buffer.

4. If the procedure identifies the characters DLE, ETX and BCC (in this or-
der), it terminates the reception. It compares the received block check
character BCC with the internally generated block parity.

5. If the block check character is correct and no receiving errors have oc-
curred, the procedure sends the character DLE. It then transfers the con-
tents of the receive buffer to the interpreter and returns to the rest state.

Error:

If the procedure in the rest state receives any character (except STX), it waits
for the character delay time CHAR_TIMEOUT to elapse and then sends the
character NAK. This error is signaled to the interpreter.

If, during the transmission phase, the character delay time CHAR_TIMEOUT
elapses without the procedure receiving another character, it sends the char-
acter NAK to the partner controller and signals the error to the interpreter.

If errors occur during the transmission phase (e.g. lost characters, parity er-
rors), the procedure continues receiving until the partner controller terminates
the connection. The procedure then sends the character NAK to the partner
controller. The procedure then waits for a repetition.

If the block check character BCC of the end label is incorrect, the procedure
sends the character NAK to the partner controller and waits for it to re-estab-
lish a connection. If the block still cannot be received without errors after 6 at-
tempts, or if the partner controller does not transmit within the wait time
TRANS_TIMEOUT, the procedure cancels the reception and signals the error
to the interpreter.

4.7.3 Initialization conflict

Initialization conflict means: both controllers are simultaneously attempting to
establish a connection. Both send the character STX. Initialization conflicts are
avoided by means of the priority. The priority determines which controller can
transmit first:

1. The controller with the lower priority withdraws its transmission request
and sends the character DLE.

2. The controller with the higher priority then transmits its data.

The priority is defined in the file SERIAL.INI. The possible values are:

 1 = higher priority
 0 = lower priority

Different priorities must be assigned to each of the controllers. If, for example,
the partner controller has priority 0, the robot controller must have priority 1.
17 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
18 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

5. Configuring the external modules
5 Configuring the external modules

File The external modules are declared in the file $CUSTOM.DAT.

Parameter O_FILE[]

The path and file name of the O file must be entered in the square brackets,
e.g. DRIVERS\tcpdrv.o.

O files are always situated in the directory C:\KRC:\ROBOTER. This part of
the path does not need to be specified.

OPTION (bit 0)

Bit 0 of OPTION defines what happens to an external module in the case of a
CCLOSE statement. The setting is called "Force unload".

OPTION (bit 1)

Bit 1 of OPTION is only relevant for external modules of type LD_EXT_OBJ
with "Force unload" deactivated. The setting is called "Leave data".

Communication via external modules is not possible in KSS 7.0.

The complete configuration of an external module is not described below.
This is module-specific. Only settings relevant to CREAD/CWRITE are de-
scribed.

DECL EXT_MOD_T $EXT_MOD_x={O_FILE[] " ",OPTION 0}

Value Description
Bit 0 = 1 "Force unload" is active. CCLOSE closes the channel to

the module, the module is unloaded and the module envi-
ronment is destroyed.

Bit 0 = 0 "Force unload" is not active. CCLOSE closes the channel
to the module. The module remains loaded and the mod-
ule environment is not destroyed. In the case of a COPEN
statement, the module does not need to be reloaded.

Value Description
Bit 1 = 1 "Leave data" is active. In the case of a CCLOSE state-

ment, all data that have been received, but not yet read,
are retained. When the channel is reopened, these data
can be read by CREAD.

Bit 1 = 0 "Leave data" is not active. CCLOSE deletes all data that
have been received, but not yet read.
19 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
20 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
6 Programming

6.1 Programming overview

All statements (except CHANNEL) can be used in both SRC and SUB files.

Statements can be interrupted by interrupt programs. If attempts are made to
access channels within the interrupt program, this access can only be inter-
rupted by other interrupt programs.

The table shows which statements are relevant for which channels:

6.2 Symbols and fonts

The following symbols and fonts are used in syntax descriptions:

Statement Serial inter-
face

External
module

Type
LD_EXT_O

BJ

External
module

Type
LD_EXT_F

CT

Command
channel

CHANNEL + + + -
CCOPEN + + + -
CREAD + + - -
CWRITE + + + +
CCLOSE + + + -
CIOCTL - + + -
SREAD Statement does not refer to a channel
SWRITE Statement does not refer to a channel
CAST_TO Statement does not refer to a channel
CAST_FRO
M

Statement does not refer to a channel

Communication via external modules is not possible in KSS 7.0.

Description Example
KRL code:

Courier font
Upper-case characters

GLOBAL; ANIN ON;
OFFSET

Elements that must be replaced by program-spe-
cific entries:

Upper- and lower-case characters
Italics

Distance; Time; Format

Optional elements:

In angle brackets

< ... >

Elements that are mutually exclusive:

Separated by the "|" symbol

IN |OUT
21 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
6.3 CHANNEL

Function CHANNEL links a predefined structure variable to a name.

This is necessary if an interface or external module is to be addressed, as the
predefined structure variables cannot be addressed directly. For example, the
serial interface COM3 cannot be addressed directly by means of $PSER3.

Syntax CHANNEL :Channel_Name :Interface_Name Structure_Variable

Description

Example CHANNEL statement for serial interface COM3:

6.4 COPEN

Function Before a channel can be used for communication with CREAD/CWRITE, it
must first be opened with COPEN.

Exception: the command channel is always open and does not need to be
opened or closed.

If a channel has been opened in an SRC program, it must be closed again be-
fore it can be opened in a SUB program. Likewise, a channel that has been
opened in a SUB program must be closed again before it can be opened in an
SRC program.

If a channel that is already open is opened again by the same interpreter, the
same handle is returned again.

Syntax COPEN (:Channel_Name, Handle)

It is not necessary to program the CHANNEL statement. It is already prede-
fined for all serial interfaces and external modules in the file $CUSTOM.DAT.
The statement is nonetheless explained here for the sake of understanding.

Parameter Description
Channel_Name Name for the serial interface or external module
Interface_Nam
e

Predefined signal variable

Structure_Varia
ble

Structure variable for the serial interface or external mod-
ule

$PSER_x contains the parameters of the serial interface
(e.g. baud rate). $PSER_x is not analyzed, however, as
the parameters of the serial interface are also contained
in the file SERIAL.INI and are analyzed there.

The structure variable for the external module,
$EXT_MOD_x, is analyzed (unlike $SPSER_x).

CHANNEL :SER_3 :SER_3 $PSER3
22 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
Description

6.5 CREAD

Function CREAD reads data from an opened serial interface or from a loaded external
module of type LD_EXT_OBJ.

It is not possible to read from external modules of type LD_EXT_FCT or from
the command channel.

Syntax CREAD (Handle, State, Mode, TIMEOUT, OFFSET, Format, Var1 <, ...,Var10>)

Description

Parameter Description
Channel_Name Channel name declared using the CHANNEL statement
Handle Type: INT

Variable to which feedback signal is sent about whether
the channel has been opened.

Handle > 0
The channel has been opened. The management
number of the open channel has been returned.
Handle = 0
Error. The channel could not be opened.
Handle < 0
Only possible with external modules.
The module was successfully loaded, but could not be
initialized. The number specifies the cause of the ini-
tialization error which is described in the driver docu-
mentation.

The variable Handle must be declared. It is useful to declare and initialize it in
the file $CONFIG.DAT as follows:
INT HANDLE = 0

Declaring the variable in $CONFIG.DAT makes it available in all programs.

Data of type INT must be in little endian format and be preceded by a
sign.
Data of type REAL must be in 32-bit representation in IEEE 754 standard
format.

Parameter Description
Handle Type: INT

Variable transferred by COPEN to CREAD identifying the
channel

State Type: STATE_T

State that is automatically returned to CREAD

 (>>> 6.14 ""State" variable" page 33)
Mode Type: MODUS_T

Read mode (see section "Read mode" below). The mode
must be initialized.
23 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Read mode The read mode is determined by a variable of type MODUS_T. MODUS_T is
a predefined enumeration type:

ENUM MODUS_T SYNC, ASYNC, ABS, COND, SEQ

For CREAD, only ABS, COND and SEQ are relevant:

TIMEOUT Type: REAL

The timeout is only relevant for read mode ABS. The
timeout defines how many seconds to wait for data. Once
this time has elapsed, waiting is terminated.

Timeout values less than 0.0 or greater than 60.0 will be
rejected.

OFFSET Type: INT

The position in the received text string at which CREAD
commences reading. If reading is to start from the begin-
ning, the offset must be set to 0.

Examples:

OFFSET=0: CREAD commences reading at the first
position.
OFFSET=2: CREAD commences reading at the third
position. Positions 1 and 2 are ignored.

The offset is incremented during reading. If, in the case of
another CREAD statement, reading is to start again at
the first position, then the offset must be set to 0 before
this statement. Otherwise, the incremented offset of the
previous statement will be accepted.

Format Type: CHAR[]

The received data must be formatted in order for them to
be able to be written to the variable Var. A format must be
specified for every Var variable.

 (>>> 6.15 ""Format" variable" page 35)
Var Variables that are filled with the received data. A maxi-

mum of 10 variables per statement are possible.

Parameter Description

Value Description
ABS CREAD waits until the channel makes data available for

reading or until waiting is aborted by timeout.
24 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
Reading with inter-
rupts

A system variable is monitored to determine whether data are available for
reading:

$DATA_SERx for the serial interface COMx
$DATA_LD_EXT_OBJx for the external module LD_EXT_OBJx

When data are received, the system variable is incremented by the channel
driver. The data can then be read with an interrupt program.

The variables are initialized with 0 when a warm restart is carried out or when
a channel is opened or closed.

In the case of external modules of type LD_EXT_OBJ: if the option "Leave da-
ta" is activated, the variable is not reset.

Example interrupt procedure:

Main program with interrupt declaration:

Interrupt program:

6.6 CWRITE

Function CWRITE writes data to an opened serial interface or to a loaded external mod-
ule of type LD_EXT_OBJ.

In a loaded external module of type LD_EXT_FCT, CWRITE calls a function.

COND CREAD checks whether data are present:

If data are present, then they are read.
If no data are present, then the system does not wait.
The CREAD statement is deemed to have been com-
pleted.

COND is useful if the CREAD statement is triggered by an
interrupt when data are available for reading (see section
"Reading with interrupts" below).

SEQ SEQ is only possible when reading from a serial interface.

If a CREAD statement cannot completely read a data set
because it is too long, the reading can be completed using
SEQ. For this purpose, the first CREAD statement in the
program (with ABS or COND) must be followed by anoth-
er (with SEQ). If required, several SEQ statements can be
used in succession.

Value Description

INTERRUPT DECL 10 WHEN $DATA_SER3<>0 DO SER_INT ()
INTERRUPT ON 10
...

DEF SER_INT ()
DECL MODUS_T MODE
...
INTERRUPT OFF 10
WHILE ($DATA_SER<>0)
 ...
 MODE=#COND
 OFFSET=0
 CREAD (HANDLE,..., MODE,...)
 ...
ENDWHILE
INTERRUPT ON 10
END
25 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
CWRITE writes commands to the command channel.

CWRITE triggers an advance run stop.

Syntax CWRITE (Handle or $CMD, State, Mode, Format, Var1 <, ..., Var10>)

Description

Write mode The write mode is determined by a variable of type MODUS_T. MODUS_T is
a predefined enumeration type:

ENUM MODUS_T SYNC, ASYNC, ABS, COND, SEQ

For CWRITE, only SYNC and ASYNC are relevant:

Parameter Description
Handle/$CMD Type: INT

Handle: Variable transferred by COPEN to CWRITE iden-
tifying the channel

$CMD: Predefined variable for writing to the command
channel

State Type: STATE_T

State that is automatically returned to CWRITE

 (>>> 6.14 ""State" variable" page 33)
Mode Type: MODUS_T

Write mode (see section "Write mode" below). The mode
must be initialized.

Format Type: CHAR[]

The Var variables must be converted into a text string
before they can be written to the channel. Format defines
the format of the text that is to be generated. A format
must be specified for every Var variable.

 (>>> 6.15 ""Format" variable" page 35)

In the case of external modules of type LD_EXT_FCT:
Instead of a format, the name of the function to be called
is specified at this point.

Var Variables whose data are written to the channel. A maxi-
mum of 10 variables per statement are possible.

In the case of external modules of type LD_EXT_FCT:

The Var variables contain the transfer parameters for the
function called with Format.

Value Description
SYNC The statement is deemed to have been executed once the

partner controller has fetched the transferred data from
the receive buffer.
26 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
6.7 CCLOSE

Function CCLOSE closes the serial interface and deletes all of the data that are waiting
to be read. Once the interface has been closed by means of CCLOSE, the var-
iable Handle can no longer be used for CREAD, CWRITE or CCLOSE. The val-
ue of the variable is not changed, however.

CCLOSE closes the channel to the external module. Whether the module is
unloaded and whether the data waiting to be read are deleted depends on the
configuration (>>> 5 "Configuring the external modules" page 19).

CCLOSE is not relevant for the command channel, as this channel is always
open.

CCLOSE triggers an advance run stop.

Syntax CCLOSE (Handle, State)

Description

6.8 CIOCTL

Function CIOCTL is only relevant for external objects.

CIOCTL can be used to transfer any data to an external object, e.g. con-
figuration data to change a file name.
CIOCTL can request any data of an external object.

CIOCTL is used to transfer data in addition to the data communicated using
CREAD/CWRITE, e.g. to request a detailed error message following a failed
CREAD or CWRITE statement. The CIOCTL statement can not be used in-

ASYNC When writing to external modules of type LD_EXT_FCT,
ASYNC mode is not allowed!

The following applies for all other channels: The state-
ment is deemed to have been executed once the data
have arrived in the receive buffer of the partner controller.

Advantage over SYNC: The program is executed
more quickly.
Disadvantage compared with SYNC: Data can be lost.

Other value If the mode has a value other than SYNC or ASYNC, writ-
ing is carried out by default in SYNC mode.

Value Description

An open serial interface is automatically closed if a program is deselected or
closed.

If an attempt is made, using CCLOSE, to close a channel that has already
been closed, the state #CMD_ABORT is returned.

Parameter Description
Handle Type: INT

Handle variable transferred by COPEN to CCLOSE iden-
tifying the channel

State Type: STATE_T

State that is automatically returned to CCLOSE

 (>>> 6.14 ""State" variable" page 33)
27 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
stead of CREAD/CWRITE because, although it can transfer the same data, it
cannot format them.

CIOCTL can also be called by the command interpreter.

CIOCTL always has a return value:

Syntax CIOCTL (Handle, Request, Argument, String, Retval)

Description

6.9 SREAD

Function SREAD has a similar function and syntax to CREAD. Unlike CREAD, howev-
er, SREAD does not read data from a channel, but from a CHAR array.

Return value

(Type INT)

Description

0 CIOCTL was executed successfully.
1 CIOCTL was not executed successfully.

Cause: The channel is closed.
2 CIOCTL was not executed successfully.

Cause: CIOCTL was called by a different inter-
preter than COPEN.

Example: COPEN was called by S_INT; CIOCTL
was called by R_INT.

If CIOCTL is called by the command interpreter,
the statement is always executed, irrespective of
which interpreter called COPEN.

3 CIOCTL was not executed successfully.

Cause: Invalid request number
>0 Error number returned by the external module.

Parameter Description
Handle Type: INT

Variable transferred by COPEN to CIOCTL identifying the
channel

Request Type: INT

Request number transferred by value to the external
module. Only request numbers greater than 0 are per-
missible.

Request numbers can have a wide range of different
functions; for example, a request number can start a spe-
cific program. The meaning of the request number is
module-specific.

Argument Type: INT

Integer data transferred to the external module.
String Type: CHAR[]

Character array transferred to the external module. Maxi-
mum 128 array elements.

Retval Type: INT

Integer value transferred by reference to the external
module. The external module can modify the value.
28 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
SREAD can be combined in programs with CREAD. Advantages:

CREAD can be restricted to reading data from the channel. More complex
formatting tasks can be carried out by SREAD. This makes programs
more flexible.
CREAD can process a maximum of 10 variables. Combination with sever-
al SREAD statements makes it possible to read the data of more than 10
variables.

Syntax SREAD (String, State, OFFSET, Format, Var1 <, ..., Var10>)

Description

6.10 SWRITE

Function SWRITE has a similar function and syntax to CWRITE. Unlike CWRITE, how-
ever, SWRITE does not write data to a channel, but to a CHAR array.

SWRITE can be combined in programs with CWRITE. Advantages:

CWRITE can be restricted to writing data to the channel. More complex
formatting tasks can be carried out by SWRITE. This makes programs
more flexible.

Parameter Description
String Type: CHAR[]

This string is read, formatted and written to the Var varia-
bles.

State Type: STATE_T

State that is automatically returned to SREAD

 (>>> 6.14 ""State" variable" page 33)
OFFSET Type: INT

The position in the string at which SREAD commences
reading. If reading is to start from the beginning, the off-
set must be set to 0.

Examples:

OFFSET=0: SREAD commences reading at the first posi-
tion.

OFFSET=2: SREAD commences reading at the third
position. Positions 1 and 2 are ignored.

The offset is incremented during reading. If, in the case of
another SREAD statement, reading is to start again at the
first position, then the offset must be set to 0 before this
statement. Otherwise, the incremented offset of the previ-
ous statement will be accepted.

Format Type: CHAR[]

The formats into which the string is converted so that it
can be written to the Var variables.

A format must be specified for every Var variable.

 (>>> 6.15 ""Format" variable" page 35)
Var Variables to which the disassembled and formatted string

is written. A maximum of 10 variables per statement are
possible.
29 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
CWRITE can process a maximum of 10 variables. Combination with sev-
eral SWRITE statements makes it possible to write the data of more than
10 variables.

SWRITE triggers an advance run stop.

Syntax SWRITE (String, State, OFFSET, Format, Var1 <, ..., Var10>)

Description

6.11 CAST_TO

Function CAST_TO makes it possible to process up to 4 KB of data with a single
CWRITE statement. CAST_TO groups individual variables together as a sin-
gle buffer. CWRITE then writes this buffer to the channel.

Maximum buffer size: 4 KB (= 4096 bytes). If the quantity of data is so great
that the maximum buffer size is insufficient, several successive CWRITE
statements must be used.

This document contains an example of a program combining CWRITE and
SWRITE.
 (>>> 7.2 "Serial interface: outputting the date" page 42)

Parameter Description
String Type: CHAR[]

The formatted contents of the Var variables are written to
the string.

State Type: STATE_T

State that is automatically returned to SWRITE

 (>>> 6.14 ""State" variable" page 33)
OFFSET Type: INT

The position in the string at which SWRITE commences
writing. If writing is to start from the beginning, the offset
must be set to 0.

Examples:

OFFSET=0: SWRITE commences writing at the first posi-
tion.

OFFSET=2: SWRITE commences writing at the third
position. Positions 1 and 2 are ignored.

The offset is incremented during writing. If, in the case of
another SWRITE statement, writing is to start again at the
first position, then the offset must be set to 0 before this
statement. Otherwise, the incremented offset of the previ-
ous statement will be accepted.

Format Type: CHAR[]

Converts the Var variables before they are written to the
string. A format must be specified for every Var variable
(>>> 6.15 ""Format" variable" page 35).

Var Variables whose data are written to the string. A maxi-
mum of 10 variables per statement are possible.
30 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
CAST_TO does not trigger an advance run stop If, however, variables are
processed that do trigger an advance run stop, then an advance run stop is
triggered indirectly.

Conversion character

If a buffer that has been generated with CAST_TO is transferred using
CWRITE, only the following conversion characters are permissible in the
CWRITE statement:

r (= raw data format)
s (= string format)

r has the following advantages over s:

If the character 0 is transferred, s interprets this as the end of the string.
This problem does not occur with r.
The offset counts in bytes. If CREAD reads the data with r, i.e. binary, the
number of values that have already been transferred can easily be calcu-
lated using the offset.

Syntax CAST_TO (Buffer, OFFSET, Var1 <, ..., Var10>)

Description

If the buffer is declared in the data list, no initial value may be set! Reason:
The initial value is overwritten by the current value. The current value can be
up to 4 KB and thus exceeds the maximum permissible length of a KRL line.
CORRECT: DECL CHAR mybuffer[4096]
INCORRECT: DECL CHAR mybuffer[4096]=" "

Parameter Description
Buffer Type: CHAR[]

Buffer to which the Var variables are written
OFFSET Type: INT

The position within the buffer (in bytes) after which data
are to be written to the buffer. The offset starts with 0.

Examples:

OFFSET=0: Writing commences at the first position.

OFFSET=2: Writing commences at the third position.
Positions 1 and 2 are ignored.

Var Variables that are written to the buffer. A maximum of 10
variables per statement are possible.

In the case of non-initialized variables or array elements,
random values are written to the buffer. Since random
values can cause problems for the buffer receiver, it is
recommended that all variables and array elements
should be initialized.

The number of bytes written to the buffer by each varia-
ble is determined by the data type of the variable.
(>>> 6.13 "Permissible data types in CAST statements"
page 32)

Example:

INT Var1, BOOL Var2, REAL Var3

Var1 writes 4 bytes to the buffer; Var2 writes 1 byte; Var3
writes 4 bytes.
31 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
6.12 CAST_FROM

Function CAST_FROM makes it possible to process up to 4 KB of data with a single
CREAD statement. If CREAD has read a buffer from a channel, CAST_FROM
can break the buffer down into individual variables.

Maximum buffer size: 4 KB (= 4096 bytes). If the quantity of data is so great
that the maximum buffer size is insufficient, several successive CREAD state-
ments must be used.

CAST_FROM does not trigger an advance run stop If, however, variables are
processed that do trigger an advance run stop, then an advance run stop is
triggered indirectly.

Syntax CAST_FROM (Buffer, OFFSET, Var1 <, ..., Var10>)

Description

6.13 Permissible data types in CAST statements

If the buffer is declared in the data list, no initial value may be set! Reason:
The initial value is overwritten by the current value. The current value can be
up to 4 KB and thus exceeds the maximum permissible length of a KRL line.
CORRECT: DECL CHAR mybuffer[4096]
INCORRECT: DECL CHAR mybuffer[4096]=" "

Parameter Description
Buffer Type: CHAR[]

Buffer whose data are used to fill the Var variables
OFFSET Type: INT

The position within the buffer (in bytes) after which the
data are used to fill Var. The offset starts with 0.

Examples:

OFFSET=0: The buffer is used from the first position.

OFFSET=2: The buffer is used from the third position.
Positions 1 and 2 are ignored.

Var Variables that are filled with the data from the buffer. A
maximum of 10 variables per statement are possible.

The number of bytes each variable receives from the
buffer is determined by its data type.
(>>> 6.13 "Permissible data types in CAST statements"
page 32)

Example:

INT Var1, BOOL Var2, REAL Var3

Var1 receives 4 bytes; Var2 receives 1 byte; Var3
receives 4 bytes.

Permissible data type Size
1. INT 4 bytes
2. REAL 4 bytes
3. BOOL 1 byte
4. CHAR 1 byte
5. ENUM 4 bytes
6. SIGNAL 1 byte
32 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
Arrays

The CAST statements can process arrays of the simple data types 1 to 5.
CAST statements do not check whether all array elements have been initial-
ized. Non-initialized elements are filled with random values.

Structure types

Structure types other than 7 to 13 may not be used in CAST statements. If oth-
er structure types are to be processed, they must be processed one compo-
nent at a time.

6.14 "State" variable

The state of a statement is automatically returned to the State variable. State is
a variable of type STATE_T and must be declared.

 (>>> 6.14.1 "Structure type STATE_T" page 33)

The State variable is a component of the following statements:

CREAD
CWRITE
CCLOSE
SREAD
SWRITE

6.14.1 Structure type STATE_T

Description STATE_T is a predefined structure type:

STRUC STATE_T CMD_STAT RET1, INT MSG_NO, INT HITS, INT LENGTH

CMD_STAT RET1 The variable "RET1" is used to signal whether a statement has been executed
successfully.

 (>>> 6.14.2 "Return values for the variable "RET1"" page 34)

INT MSG_NO If an error occurs during execution of a statement, the variable MSG_NO con-
tains the error number. MSG_NO is relevant for the following statements:

CREAD
CWRITE
SREAD
SWRITE

INT HITS The number of correctly read or written formats. INT HITS is relevant for the
following statements:

7. FRAME 6*REAL
8. POS 6*REAL + 2*INT
9. AXIS 6*REAL
10. E3POS 6*REAL + 2*INT + 3*REAL
11. E3AXIS 6*REAL + 3*REAL
12. E6POS 6*REAL + 2*INT * 6*REAL
13 E6AXIS 6*REAL + 6*REAL

Permissible data type Size
33 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
CREAD
CWRITE
SREAD
SWRITE

INT LENGTH The length of the bytes correctly converted to variables in accordance with the
format specification. INT LENGTH is relevant for the following statements:

CREAD
SREAD

6.14.2 Return values for the variable "RET1"

Description The variable "RET1" is used to signal whether a statement has been executed
successfully. The variable "RET1" is of type CMD_STAT and is a component
of the structure type STATE_T.

CMD_STAT is a predefined enumeration type:

ENUM CMD_STAT CMD_OK, CMD_TIMEOUT, DATA_OK, DATA_BLK,
DATA_END, CMD_ABORT, CMD_SYN, FMT_ERR

CREAD RET1 can have the following values for CREAD:

Value Description
CMD_OK Only relevant in COND mode:

A check has been made to see whether data are
present for reading. No data are present for reading,
however.

CMD_TIMEOU
T

Only relevant in ABS mode:

Reading has been aborted because the wait time has
been exceeded

DATA_OK Only relevant when reading from a serial interface:

All data have been read.
DATA_BLK Only relevant when reading from a serial interface:

CREAD has received a data set and read the start of the
data. The data set was too long, however, to be read
through to the end.

DATA_END When reading from an external module of type
LD_EXT_OBJ: All data have been read.

When reading from a serial interface: Only relevant in
SEQ mode: CREAD has read the data set through to
the end.

CMD_ABORT Reading has been aborted. Possible causes:

Error message from channel
Error reading the data
A mode other than ABS, COND or SEQ has been
initialized.
The mode has not been initialized.

FMT_ERR The specified format does not match the variable type
of the Var variable.
34 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
CWRITE RET1 can have the following values for CWRITE:

SREAD/SWRITE RET1 can have the following values for SREAD and SWRITE:

CCLOSE RET1 can have the following values for CCLOSE:

6.15 "Format" variable

The Format variable is a component of the following statements:

CREAD
CWRITE
SREAD
SWRITE

6.15.1 "Format" variable for CREAD/SREAD

A format specification for CREAD or SREAD has the following structure:
"%<W>U"

Value Description
CMD_OK Only relevant when writing to a serial interface:

The statement was executed successfully. Unlike with
DATA_OK, there are no data ready to be read in the re-
ceive buffer.

DATA_OK When writing to a serial interface: The statement was
executed successfully. Furthermore, there are data in
the receive buffer than could be read. (This does not
necessarily mean that the data have arrived recently in
the receive buffer and are up to date.)

When writing to an external module: The statement was
executed successfully.

CMD_ABORT The statement was not executed successfully.
CMD_SYN Only relevant for writing to the command channel:

The syntax of the statement is incorrect and the state-
ment cannot be executed.

FMT_ERR The specified format does not match the variable type
of the Var variable.

Value Description
CMD_OK The statement was executed successfully.
CMD_ABORT The statement was not executed successfully.
FMT_ERR The specified format does not match the variable type

of the Var variable.

Value Description
CMD_OK The statement was executed successfully.
CMD_ABORT The statement was not executed successfully.

Possible causes:

The channel is already closed
The handle is invalid.
The channel has been opened by another process.
35 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Format specifications for arrays have the following structure: "%<W<.Z>>U"

6.15.2 "Format" variable for CWRITE/SWRITE

A format specification for CWRITE or SWRITE has the following structure:
"%<FW.G>U"

Element F Formatting characters. Optional.

Multiple formatting characters can be applied to a format.

Element W Minimum number of positions to be output. Optional.

Decimal points are counted as helping to make up the minimum number, pre-
ceding signs are not. To reach the minimum number, zero bytes (in little endi-
an format) are added at the end. The minimum number may be exceeded
where necessary.

Examples:

VAR=1.56
"%+8.4d", VAR

Result: _ _ + 1 . 5 6 0 0

Element Description
W Maximum number of characters to be read. Optional.
Z Number of array elements to be written. Optional.
U Conversion character

 (>>> 6.15.3 "Conversion characters" page 37)

Format specifications for CREAD/SREAD may not contain formatting char-
acters (e.g. #)!

Formatting
character

Description

+ The converted value is always preceded by a sign: pos-
itive values with +, negative values with -.

If this formatting character is not used, positive values
are represented without a sign and negative values are
represented with -.

- The converted value is left-aligned.
In format x, every value that is not equal to zero is pre-

ceded by 0.

In formats e, f and g, a decimal point is always inserted.
0 The converted value is preceded by zeros to make up

the minimum width W.
[Space] In format d, e, f, g or i, the converted argument is pre-

ceded by a space.
* Formats c and r do not always correctly interpret a

space in the data string. To avoid misinterpretations,
special format specifications with an asterisk (*) can be
used for spaces.

A format preceded by this character thus no longer cor-
responds to one of the Var variables, but to a space in
the data string.
36 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
VAR=125.568
"%+8.4d", VAR

Result: + 1 2 5 . 5 6 8 0

If the width is specified with 0x, this means that the positions to be output are
filled with zeros.

Example:

VAR=1
"%+04d", VAR

Result: + 0 0 0 1

Compared with the specification without 0:

"%+4d", VAR

Result: _ _ _ + 1

If no width is specified, the following default widths are used:

INT, REAL, ENUM: 4 bytes
BOOL, CHAR: 1 byte

Element G Accuracy specification

Element U Conversion character

 (>>> 6.15.3 "Conversion characters" page 37)

6.15.3 Conversion characters

The conversion character is a component of the Format variable.

The conversion characters listed in the following table are permissible. They
correspond to FPRINTF in the programming language C. The characters o, p,
n, u and [list] from FPRINTF are not supported. In addition to the characters
from FPRINTF, the character r has been introduced:

No distinction is made between upper-case and lower-case letters with con-
version characters. Boolean values are output as 0 or 1, ENUM constants as
numbers.

Format Description
r in the case of

an array
Number of array elements to be represented

e, f Number of positions to the right of the decimal point
g Number of significant figures
s Maximum number of characters represented

All other formats Number of characters to be represented. If the source
value contains more characters, it is truncated or round-
ed.

Format with r Description
"%x.xr" Reads or writes a byte sequence of the specified length

(e.g. "%2.5r").
"%r" Reads or writes all available bytes.
"%1r Reads or writes one byte. Unlike the other conversion

characters, the reading of an individual byte must be ex-
plicitly specified here with 1.
37 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
6.15.4 Which format for which variable?

Use of the formats is identical for CREAD and SREAD on the one hand and
for CWRITE and SWRITE on the other.

Procedure 1. Select the required table below.
2. In the header of the table, search for the data type of the Var variable.

All the permissible formats are indicated by "+" in the column of this data
type.

Description For most data types, there are several permissible formats, e.g. "%s" and
"%1.<Z>r" for CHAR arrays. Which format needs to be selected depends on
the manner in which the partner controller can send or receive the data.

In the case of arrays, the specification "Z" can be used to define the number
of array elements to be taken into consideration. If no value is specified for "Z",
all array elements are taken into consideration. The process is aborted, how-
ever, at the first non-initialized value. An exception is the format r. In this case,
the process is not aborted. Instead, random values are output for variables or
array elements that have not been initialized.

CREAD/SREAD

Conversion
character

Description

c A single-character argument is expected; this is then
processed as an ASCII character.

No width W can be specified for formats with the conver-
sion character c.

d Integer number represented as a decimal.
e Exponential notation.

The argument is converted into the format [-
]m.nnnnnnE[+-]xx. The second character string in For-
mat specifies the number of digits to the right of the dec-
imal point.

f Decimal point representation.

An argument is represented in the format [-
]mm.nnnnnn. The second character string in Format
specifies the number of digits to the right of the decimal
point.

g Formatting is carried out using %e or %f, depending on
which format allows the shorter representation.

i Integer number represented as a decimal.
r Converts the value of its variable not into ASCII, but into

binary notation. With the format %r, the system does not
check whether the variable or the array element is ini-
tialized.

s Represents a character string.
x Hexadecimal notation. Represents the argument in

base 16.

Format INT REAL BOOL ENUM CHAR
%d, %i, %x + + + + +
%f, %e, %g +

%c + + + +
%1r + + + +
38 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

6. Programming
Remarks:

Data type BOOL
Every value that is not equal to zero is converted to TRUE
Data type ENUM
The system checks whether the value is a permissible ENUM value. If it is
not, reading is aborted. The value of the first ENUM constant is 1.
Format specifications for arrays
If there are not enough data available to satisfy the format specifications
(e.g. "%2.5r", but only 7 bytes are present), nothing is read for this format
and the CREAD statement is aborted. The ignored data are still available
for reading.
Format %r
Only as many bytes as can fit into the variable are read. The rest are still
available for reading. If the array is big enough but the number of bytes is
not a multiple of the size of an array element, the redundant bytes remain
available for reading (for the following format or for the next CREAD state-
ment).

CWRITE/SWRITE

%2r + + +
%4r + + + +
%r + + + + +

Format INT ar-
ray

REAL
array

BOOL
array

ENUM
array

CHAR
array

%s +
%1.<Z>r + + + +
%2.<Z>r + + +
%4.<Z>r + + + +

%r + + + + +
%.<Z>r + + + + +

Format INT REAL BOOL ENUM CHAR

Format INT REAL BOOL ENUM CHAR
%d, %i, %x + + + +
%f, %e, %g + +

%c +
%1r + + + +
%2r + + +
%4r + + + +
%r + + + + +

Format INT ar-
ray

REAL
array

BOOL
array

ENUM
array

CHAR
array

%s +
%1.<Z>r + + + +
%2.<Z>r + + +
%4.<Z>r + + + +

%r + + + + +
%.<Z>r + + + + +
39 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
6.15.5 Conversion examples

Example 1 The value of the integer variable VI is transferred in decimal and hexadecimal
ASCII notation. The first CWRITE statement transfers the characters 123. The
second CWRITE statement transfers the characters 7B.

Example 2 The value of the integer variable VI is transferred in binary notation:

Example 3 All array elements of an array are transferred:

With the format "%r", the system does not check whether the variable or the
array element is initialized. Random values are transferred for array elements
that have not been initialized.

Example 4 The first five array elements of an array are transferred in binary notation:

20 bytes are transferred in binary notation.

Example 5 All array elements up to the first non-initialized element are transferred:

Example 6 The first 50 array elements are transferred:

Example 7 The internal value of the ENUM constant is transferred in ASCII notation. The
corresponding number is transferred:

Example 8 Two REAL values are transferred with additional text:

The following data are transferred:

value1=+03.970
value2=-27.30

INT VI
VI=123
CWRITE(HANDLE,SW_T,MW_T,"%d",VI)
CWRITE(HANDLE,SW_T,MW_T,"%x",VI)

INT VI
VI=123
CWRITE(HANDLE,SW_T,MW_T,"%r",VI)

REAL VR[10]
CWRITE(HANDLE,SW_T,MW_T,"%r",VR[])

REAL VR[10]
CWRITE(HANDLE,SW_T,MW_T,"%.5r",VR[])

CHAR VS[100]
CWRITE(HANDLE,SW_T,MW_T,"%s",VS[])

CHAR VS[100]
CWRITE(HANDLE,SW_T,MW_T,"%s",VS[])

DECL ENUM_TYP E
CWRITE(HANDLE,SW_T,MW_T,"%d",E)

REAL V1,V2
V1=3.97
V2=-27.3
CWRITE(...,...,...,"value1=%+#07.3f value2=+#06.2f",V1,V2)
40 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

7. Example programs
7 Example programs

7.1 Serial interface: sending and receiving position data

7.1.1 Sending position data

Robot station 1 sends its current position data to robot station 2.

Main program Synchronous transfer is initialized with MW_T=#SYNC:

Subprograms Subprogram for opening the channel:

Subprogram for sending. Successive formats must be separated by spaces,
otherwise misinterpretations are possible:

Subprogram for closing the channel:

7.1.2 Receiving position data

Robot station 2 receives position data from robot station 1 and applies them
as its own current position.

Main program The absolute wait is initialized with MW_T=#ABS. The wait time is limited to 3
seconds with TIMEOUT=3.0:

DEFDAT SEND
;----Declarations----
INT HANDLE
DECL STATE_T SW_T, SC_T
DECL MODUS_T MW_T
ENDDAT

DEF SEND()
;----Initializations----
MW_T=#SYNC
;----Instructions----
OPEN_P()
WRITE()
CLOSE_P()
END

DEF OPEN_P()
COPEN(:SER_3, HANDLE)
IF (HANDLE==0) THEN
 HALT
ENDIF
END

DEF WRITE()
CWRITE (HANDLE, SW_T, MW_T, "%+#10.4f %+#10.4f %+#10.4f %+#10.4f
%+#10.4f %+#10.4f", $POS_ACT.X, $POS_ACT.Y, $POS_ACT.Z, $POS_ACT.A,
$POS_ACT.B, $POS_ACT.C)
IF (SW_T.RET1<>#CMD_OK) THEN
 HALT
ENDIF
END

DEF CLOSE_P()
CCLOSE (HANDLE,SC_T)
IF (SC_T.RET1<>#CMD_OK) THEN
HALT
ENDIF
END
41 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Subprograms Subprogram for opening the channel:

Subprogram for reading. Successive formats must be separated by spaces,
otherwise misinterpretations are possible:

Subprogram for closing the channel:

7.2 Serial interface: outputting the date

This program is an example of how CWRITE can be combined with SWRITE.

The program can be expanded so that in addition to the year, month and day,
the hours, minutes and seconds can also be written to the TEXT string by
SWRITE. In this way, CWRITE can transfer a string in which a total of 12 for-
mats are processed (2 per SWRITE statement). Combination of CWRITE with
SWRITE thus makes it possible to bypass the the limitation of CWRITE to 10
formats.

$DATE contains the system time and date. DATE is a predefined structure
type: DATE INT CSEC, SEC, MIN, HOUR, DAY, MONTH, YEAR.

DEFDAT RECEIVE
;----Declarations----
INT HANDLE, OFFSET
REAL TIMEOUT
DECL STATE_T SR_T, SC_T
DECL MODUS_T MR_T
ENDDAT

DEF RECEIVE()
;----Initializations----
MW_T=#ABS
TIMEOUT=3.0
;----Instructions----
OPEN_P()
READ()
CLOSE_P()
END

DEF OPEN_P()
COPEN(:SER_3, HANDLE)
IF (HANDLE==0) THEN
 HALT
ENDIF
END

DEF READ()
OFFSET=0
CREAD (HANDLE, SR_T, MR_T, TIMEOUT, OFFSET, "%f %f %f %f %f %f",
$POS_ACT.X, $POS_ACT.Y, $POS_ACT.Z, $POS_ACT.A, $POS_ACT.B,
$POS_ACT.C)
IF (SR_T.RET1<>#DATA_OK) THEN
 HALT
ENDIF
END

DEF CLOSE_P()
CCLOSE (HANDLE,SC_T)
IF (SC_T.RET1<>#CMD_OK) THEN
 HALT
ENDIF
END
42 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

7. Example programs
Data list

The array elements of TEXT have been initialized individually in the data list.
In this way, the result can be read after program execution.

SRC file The first "OFFSET=0" in the statements section fills the TEXT string with spac-
es. In this way, data from previous program executions can be deleted.

The second "OFFSET=0" prevents the incremented offset from the data list
from being applied.

CWRITE writes the TEXT string generated with SWRITE to the channel.

DEFDAT DATE_PRG
INT OFFSET=0
DECL MODUS_T MOD
DECL CHAR TEXT[30]
TEXT[1]=" "
TEXT[2]=" "
TEXT[3]=" "
TEXT[4]=" "
TEXT[5]=" "
TEXT[6]=" "
TEXT[7]=" "
TEXT[8]=" "
TEXT[9]=" "
TEXT[10]=" "
TEXT[11]=" "
TEXT[12]=" "
TEXT[13]=" "
TEXT[14]=" "
TEXT[15]=" "
TEXT[16]=" "
TEXT[17]=" "
TEXT[18]=" "
TEXT[19]=" "
TEXT[20]=" "
TEXT[21]=" "
TEXT[22]=" "
TEXT[23]=" "
TEXT[24]=" "
TEXT[25]=" "
TEXT[26]=" "
TEXT[27]=" "
TEXT[28]=" "
TEXT[29]=" "
TEXT[30]=" "
ENDDAT

DEF DATE_PRG()
;----Initializations----
INT I
DECL DATE DATE_VAR
DATE_VAR=$DATE
MOD=#SYNC
;----Instructions----
OFFSET=0
FOR I= 1 TO 30
TEXT[I]=" "
ENDFOR
OFFSET=0
SWRITE(TEXT[],STAT,OFFSET,"%s%d","YEAR:",DATE_VAR.YEAR)
 OFFSET=10
SWRITE(TEXT[],STAT,OFFSET,"%s%02d","MONTH:",DATE_VAR.MONTH)
OFFSET=20
SWRITE(TEXT[],STAT,OFFSET,"%s%02d","DAY:",DATE_VAR.DAY)
C_OPEN()
CWRITE(HANDLE,STAT,MOD,"%s",TEXT[])
C_CLOSE()
END
43 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
7.3 External module: calling a function by means of LD_EXT_FCT

COPEN loads the external module. CWRITE calls the function. CLOSE un-
loads the external module.

7.4 Command channel: starting, stopping and deselecting a program

The program A6.SRC is to be started, stopped and deselected via the com-
mand channel. This is done by means of the following program lines in a SUB
file.

7.5 Combining CREAD/CWRITE with CAST statements

Example 1 The integer values 1 to 1024 are written to the channel using a single CWRITE
statement. For this purpose, the values are first written to the buffer BIG-
STRING[] using CAST_TO. CWRITE then writes the buffer to the channel.

Communication via external modules is not possible in KSS 7.0.

DEF FUNCTION()
INT HANDLE
DECL CHAR STRING[30]
DECL STATE_T STAT
DECL MODUS_T MOD
COPEN(:LD_EXT_FCT1, HANDLE)
IF HANDLE <=0 THEN
 ERRMSG ("Cannot open ld_ext_fct1")
ENDIF
MOD=#SYNC
STRING[]="test data for ext. mod."
CWRITE(HANDLE,STAT,MOD,"MyOwnFunction",STRING[])
IF STAT.RET<>#DATA_OK THEN
 ERRMSG("Cannot send data to ld_ext_fct1")
ENDIF
CCLOSE(HANDLE,STAT)
IF STAT.RET<>#CMD_OK THEN
 ERRMSG("Cannot close ld_ext_fct1")
ENDIF
END

DECL STATE_T STAT
DECL MODUS_T MODE
MODE=#SYNC
...
;select program A6()
;to start the program the START-button or
;an external start-signal is needed
IF $FLAG[1]==TRUE THEN
 CWRITE($CMD,STAT,MODE,"RUN/R1/A6()")
 $FLAG[1]=FALSE
ENDIF
;stop program A6()
IF $FLAG[2]==TRUE THEN
 CWRITE($CMD,STAT,MODE,"STOP 1")
 $FLAG[2]=FALSE
ENDIF
;cancel program A6()
IF $FLAG[3]==TRUE THEN
 CWRITE($CMD,STAT,MODE,"CANCEL 1")
 $FLAG[3]=FALSE
ENDIF
44 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

7. Example programs
Example 2 A second robot station receives the data from example 1. It reads the data
from the channel and writes them to the buffer BIGSTRING_2[]. The buffer is
then written to the VAR variable.

DECL CHAR BIGSTRING[4096]
...
OFFSET=0
FOR n=1 TO 1024
 CAST_TO (BIGSTRING[],OFFSET,N)
ENDFOR
CWRITE(HANDLE,STAT,MODEWRITE,"%1.4096r",BIGSTRING[])
...

DECL CHAR BIGSTRING_2[4096]
...
INT VAR[1024]
...
OFFSET=0
CREAD(HANDLE,STAT,MODEREAD,TIMEOUT,OFFSET,"%1.4096r",BIGSTRING_2[])
...
OFFSET=0
FOR N=1 to 1024
 CAST_FROM (BIGSTRING_2[],OFFSET,VAR[n])
ENDFOR
...
45 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
46 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

8. Appendix
8 Appendix

8.1 File paths

The following table specifies the default paths of all the files referred to in this
documentation.

8.2 Hardware requirements

Cables Connectors: RS232 SUB-D
Standard cables, maximum capacitance 2 500 pF/m. Maximum length 15
m.
Cables with lower capacitance, e.g. UTP CAT-5 with 55pF/m. Maximum
length 45 m.
Or KR C with network connection (MFC or network card)

Connector pin
allocation

The serial interfaces of the KR C2 are designed as 9-contact Sub-D connec-
tors.

File Directory
$CUSTOM.DAT C:\KRC\ROBOTER\KRC\STEU\Mada
$CONFIG.DAT C:\KRC\ROBOTER\KRC\R1\System
HW_INF.INI

This file is not available in
KSS 7.0.

C:\KRC\ROBOTER\INIT

SERIAL.INI C:\KRC\ROBOTER\INIT

Pin Direction Name Description
1 <----- CD Carrier Detect

(telephone picked up)
2 <----- RDX Receive Data

(data cable - receive)
3 -----> TDX Transmit Data

(data cable - send)
4 -----> DTR Data Terminal Ready

(handshake output for DSR)
5 ------ GND System Ground

(zero potential)
6 <----- DSR Data Set Ready

(handshake input for DSR)
7 -----> RTS Request to Send

(handshake request for
sending)

8 <----- CTS Clear to Send

(handshake input for RTS
from partner)

9 <----- RI Ring Indicator

(telephone ring tone)
47 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Fig. 8-1: Connector pin assignment of 9-contact Sub-D connector
48 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

9. KUKA Service
9 KUKA Service

9.1 Requesting support

Introduction The KUKA Robot Group documentation offers information on operation and
provides assistance with troubleshooting. For further assistance, please con-
tact your local KUKA subsidiary.

Information The following information is required for processing a support request:

Model and serial number of the robot
Model and serial number of the controller
Model and serial number of the linear unit (if applicable)
Version of the KUKA System Software
Optional software or modifications
Archive of the software
Application used
Any external axes used
Description of the problem, duration and frequency of the fault

9.2 KUKA Customer Support

Availability KUKA Customer Support is available in many countries. Please do not hesi-
tate to contact us if you have any questions.

Argentina Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia Marand Precision Engineering Pty. Ltd. (Agency)
153 Keys Road
Moorabbin
Victoria 31 89
Australia
Tel. +61 3 8552-0600
Fax +61 3 8552-0605
robotics@marand.com.au

Faults leading to production downtime are to be reported to the local KUKA
subsidiary within one hour of their occurrence.
49 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Austria KUKA Roboter GmbH
Vertriebsbüro Österreich
Regensburger Strasse 9/1
4020 Linz
Austria
Tel. +43 732 784752
Fax +43 732 793880
office@kuka-roboter.at
www.kuka-roboter.at

Belgium KUKA Automatisering + Robots N.V.
Centrum Zuid 1031
3530 Houthalen
Belgium
Tel. +32 11 516160
Fax +32 11 526794
info@kuka.be
www.kuka.be

Brazil KUKA Roboter do Brasil Ltda.
Avenida Franz Liszt, 80
Parque Novo Mundo
Jd. Guançã
CEP 02151 900 São Paulo
SP Brazil
Tel. +55 11 69844900
Fax +55 11 62017883
info@kuka-roboter.com.br

Chile Robotec S.A. (Agency)
Santiago de Chile
Chile
Tel. +56 2 331-5951
Fax +56 2 331-5952
robotec@robotec.cl
www.robotec.cl

China KUKA Flexible Manufacturing Equipment (Shanghai) Co., Ltd.
Shanghai Qingpu Industrial Zone
No. 502 Tianying Rd.
201712 Shanghai
P.R. China
Tel. +86 21 5922-8652
Fax +86 21 5922-8538
Franz.Poeckl@kuka-sha.com.cn
www.kuka.cn
50 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

9. KUKA Service
France KUKA Automatisme + Robotique SAS
Techvallée
6 Avenue du Parc
91140 Villebon s/Yvette
France
Tel. +33 1 6931-6600
Fax +33 1 6931-6601
commercial@kuka.fr
www.kuka.fr

Germany KUKA Roboter GmbH
Blücherstr. 144
86165 Augsburg
Germany
Tel. +49 821 797-4000
Fax +49 821 797-1616
info@kuka-roboter.de
www.kuka-roboter.de

Hungary KUKA Robotics Hungaria Kft.
Fö út 140
2335 Taksony
Hungary
Tel. +36 24 501609
Fax +36 24 477031
info@kuka-robotics.hu

India KUKA Robotics, Private Limited
621 Galleria Towers
DLF Phase IV
122 002 Gurgaon
Haryana
India
Tel. +91 124 4148574
info@kuka.in
www.kuka.in

Italy KUKA Roboter Italia S.p.A.
Via Pavia 9/a - int.6
10098 Rivoli (TO)
Italy
Tel. +39 011 959-5013
Fax +39 011 959-5141
kuka@kuka.it
www.kuka.it
51 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Korea KUKA Robot Automation Korea Co. Ltd.
4 Ba 806 Sihwa Ind. Complex
Sung-Gok Dong, Ansan City
Kyunggi Do
425-110
Korea
Tel. +82 31 496-9937 or -9938
Fax +82 31 496-9939
info@kukakorea.com

Malaysia KUKA Robot Automation Sdn Bhd
South East Asia Regional Office
No. 24, Jalan TPP 1/10
Taman Industri Puchong
47100 Puchong
Selangor
Malaysia
Tel. +60 3 8061-0613 or -0614
Fax +60 3 8061-7386
info@kuka.com.my

Mexico KUKA de Mexico S. de R.L. de C.V.
Rio San Joaquin #339, Local 5
Colonia Pensil Sur
C.P. 11490 Mexico D.F.
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx

Norway KUKA Sveiseanlegg + Roboter
Bryggeveien 9
2821 Gjövik
Norway
Tel. +47 61 133422
Fax +47 61 186200
geir.ulsrud@kuka.no

Portugal KUKA Sistemas de Automatización S.A.
Rua do Alto da Guerra n° 50
Armazém 04
2910 011 Setúbal
Portugal
Tel. +351 265 729780
Fax +351 265 729782
kuka@mail.telepac.pt
52 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

9. KUKA Service
Russia KUKA-VAZ Engineering
Jushnoje Chaussee, 36 VAZ, PTO
445633 Togliatti
Russia
Tel. +7 8482 391249 or 370564
Fax +7 8482 736730
Y.Klychkov@VAZ.RU

South Africa Jendamark Automation LTD (Agency)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Spain KUKA Sistemas de Automatización S.A.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 814-2353
Fax +34 93 814-2950
Comercial@kuka-e.com
www.kuka-e.com

Sweden KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland KUKA Roboter Schweiz AG
Riedstr. 7
8953 Dietikon
Switzerland
Tel. +41 44 74490-90
Fax +41 44 74490-91
info@kuka-roboter.ch
www.kuka-roboter.ch
53 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Taiwan KUKA Robot Automation Taiwan Co. Ltd.
136, Section 2, Huanjung E. Road
Jungli City, Taoyuan
Taiwan 320
Tel. +886 3 4371902
Fax +886 3 2830023
info@kuka.com.tw
www.kuka.com.tw

Thailand KUKA Robot Automation (M)SdnBhd
Thailand Office
c/o Maccall System Co. Ltd.
49/9-10 Soi Kingkaew 30 Kingkaew Road
Tt. Rachatheva, A. Bangpli
Samutprakarn
10540 Thailand
Tel. +66 2 7502737
Fax +66 2 6612355
atika@ji-net.com
www.kuka-roboter.de

UK KUKA Automation + Robotics
Hereward Rise
Halesowen
B62 8AN
UK
Tel. +44 121 585-0800
Fax +44 121 585-0900
sales@kuka.co.uk

USA KUKA Robotics Corp.
22500 Key Drive
Clinton Township
48036 Michigan
USA
Tel. +1 866 8735852
Fax +1 586 5692087
info@kukarobotics.com
www.kukarobotics.com
54 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

V1.3

Index
Index

Symbols
$CMD 26
$CONFIG.DAT 23, 47
$CUSTOM.DAT 19, 22, 47
$DATA_LD_EXT_OBJx 25
$DATA_SERx 25
$DATE 42
$EXT_MOD_x 22
$PSER_x 22

Numbers
3964R 12, 15
3964R procedure 12, 15

A
ABS 24
Advance run stop 26, 27, 30, 31, 32
Appendix 47
ASYNC 27

B
BAUD 12
Baud rate 12
BCC 13, 15, 17
Block check character 15
Block parity 15

C
CAST_FROM 32, 44
CAST_TO 30, 44
CCLOSE 27
CHANNEL 22
CHAR_LEN 12
CHAR_TIMEOUT 13, 15, 16, 17
CIOCTL 27
CMD_ABORT 34, 35
CMD_OK 34, 35
CMD_STAT 33, 34
CMD_SYN 35
CMD_TIMEOUT 34
Cold start 11
COM2 11
COM3 11
Command channel 10
Command interpreter 28
COND 25
Conversion character 31
Conversion characters 37
Conversion examples 40
COPEN 22
CREAD 23
CWRITE 25

D
Data bits 12
DATA_BLK 34
DATA_END 34

DATA_OK 34, 35
DATE 42
Description of functions 7
DIN 66003 15
Directories 47
DLE 13, 15, 16, 17
Documentation, robot system 5
DSR_LINE 14

E
Ethernet interface 9
ETX 15, 17
External modules 9, 19

F
File paths 47
FMT_ERR 34, 35
Fonts 21
Force unload 19
Format 35
Formatting characters 36

H
Handle 23, 26, 27, 28
Handshake procedure 13
Hardware 47
HITS 33
HW_INF.INI 11, 47

I
IEEE 754 23
Initialization conflict 13, 17
Interrupt 21, 25
Introduction 5

K
KUKA Customer Support 49

L
LD_EXT_FCT 9, 26
LD_EXT_OBJ 9
Leave data 19
LENGTH 34
Little endian format 23, 36
Low-level protocols 13

M
MAX_RX_BUFFER 13
MAX_TX_BUFFER 13
MODUS_T 24, 26
MSG_NO 33

N
NAK 16, 17

O
O file 9, 19
55 / 5719.06.2007 KSS-ED-CRCWR-54-55-70 en

CREAD/CWRITE
Offset 24, 29, 30, 31, 32
Output buffer 13, 15

P
PARITY 12
Parity 12
Paths 47
Priority 13, 17
PROC 12
Program interpreter 10
Programming 21
Programming, overview 21
PROTOCOL_PRIOR 13

Q
QUITT_TIMEOUT 13, 16

R
Receive buffer 13, 14, 15
RET1 33, 34
RX_BUFFER 15

S
Safety instructions 5
SEQ 25
Serial interface 9, 11
SERIAL.INI 11, 12, 13, 14, 15, 17, 22, 47
Service, KUKA Roboter 49
SIZE_RX_BUFFER 13
SRC program 22
SREAD 28
SRVT protocol 12
State 33
STATE_T 33
Stop bits 12
STOP_BIT 12
STX 15, 16
SUB program 22
Support request 49
SWRITE 29
Symbols 21
SYNC 26

T
TCP/IP 9
Telnet 14
Timeout 24
Training program 5
TRANS_TIMEOUT 13, 17
Transmission procedure 12
TX_BUFFER 15

V
VxWorks 11

W
Warnings 5
WTC protocol 12

X
XOFF_VAL 14
Xon/Xoff protocol 13
XON_VAL 14
56 / 57 V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

57 / 57V1.3 19.06.2007 KSS-ED-CRCWR-54-55-70 en

	CREAD/CWRITE
	1 Introduction
	1.1 Target group
	1.2 Robot system documentation
	1.3 Representation of warnings and notes
	Safety
	Notes

	2 Description of functions
	Functions
	Example

	3 Communication channels
	3.1 Communication via a serial interface
	Description
	Configuration
	Overview

	3.2 Communication via external modules
	Description
	Configuration
	Overview

	3.3 Communication via the command channel
	Description
	Configuration
	Overview

	4 Configuring the serial interface
	4.1 Overview of configuration of the serial interface
	4.2 Assigning the serial interface to the operating system
	Description
	File

	4.3 Configuring the serial interface
	File
	Parameter

	4.4 Configuring the 3964R procedure
	File
	Parameter

	4.5 Configuring the Xon/Xoff protocol
	Description
	File
	Parameter

	4.6 Displaying sent/received data with Telnet
	Precondition
	Procedure
	Example

	4.7 3964R procedure
	4.7.1 3964R procedure sends data
	Overview
	Description
	4.7.2 3964R procedure receives data
	4.7.3 Initialization conflict

	5 Configuring the external modules
	File
	Parameter

	6 Programming
	6.1 Programming overview
	6.2 Symbols and fonts
	6.3 CHANNEL
	Function
	Syntax
	Description
	Example

	6.4 COPEN
	Function
	Syntax
	Description

	6.5 CREAD
	Function
	Syntax
	Description
	Read mode
	Reading with interrupts

	6.6 CWRITE
	Function
	Syntax
	Description
	Write mode

	6.7 CCLOSE
	Function
	Syntax
	Description

	6.8 CIOCTL
	Function
	Syntax
	Description

	6.9 SREAD
	Function
	Syntax
	Description

	6.10 SWRITE
	Function
	Syntax
	Description

	6.11 CAST_TO
	Function
	Syntax
	Description

	6.12 CAST_FROM
	Function
	Syntax
	Description

	6.13 Permissible data types in CAST statements
	6.14 "State" variable
	6.14.1 Structure type STATE_T
	Description
	CMD_STAT RET1
	INT MSG_NO
	INT HITS
	INT LENGTH
	6.14.2 Return values for the variable "RET1"
	Description
	CREAD
	CWRITE
	SREAD/SWRITE
	CCLOSE

	6.15 "Format" variable
	6.15.1 "Format" variable for CREAD/SREAD
	6.15.2 "Format" variable for CWRITE/SWRITE
	Element F
	Element W
	Element G
	Element U
	6.15.3 Conversion characters
	6.15.4 Which format for which variable?
	Procedure
	Description
	CREAD/SREAD
	CWRITE/SWRITE
	6.15.5 Conversion examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	7 Example programs
	7.1 Serial interface: sending and receiving position data
	7.1.1 Sending position data
	Main program
	Subprograms
	7.1.2 Receiving position data
	Main program
	Subprograms

	7.2 Serial interface: outputting the date
	Data list
	SRC file

	7.3 External module: calling a function by means of LD_EXT_FCT
	7.4 Command channel: starting, stopping and deselecting a program
	7.5 Combining CREAD/CWRITE with CAST statements
	Example 1
	Example 2

	8 Appendix
	8.1 File paths
	8.2 Hardware requirements
	Cables
	Connector pin allocation

	9 KUKA Service
	9.1 Requesting support
	Introduction
	Information

	9.2 KUKA Customer Support
	Availability

	Index

