
SubmitInt R1 02.00.01 en

1 of 15

SOFTWARE

KR C

Submit Interpreter

Operation and Programming

Release 1

Issued: 04 May 2005 Version: 01

2 of 15

SubmitInt R1 02.00.01 en

e Copyright KUKA Roboter GmbH
This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of the publishers.
Other functions not described in this documentation may be operable in the controller. The user has no claim to these functions, however, in
the case of a replacement or service work.
We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies
cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a
regular basis, however, and necessary corrections will be incorporated in subsequent editions.
Subject to technical alterations without an effect on the function.

3 of 15

SubmitInt R1 02.00.01 en

Contents

1 KR C and Submit interpreter 5. .

1.1 Meaning and purpose of the controller interpreter 5. .

1.2 Startup function 5. .

1.3 What the Submit interpreter cannot do 5. .

2 Programming the Submit interpreter 6. .

2.1 Expansion and modification of the SPS.SUB program 6. .

2.2 Creating and editing your own Submit program 6. .

2.3 Command set 7. .
2.3.1 Access to system variables 8. .
2.3.2 Access to robot inputs and outputs 8. .

2.4 Compiler 9. .

3 Operator control 10. .

3.1 Manual start 10. .

3.2 Manual stop 10. .

3.3 Visualization of program execution for fault analysis 11. .

4 Examples 12. .

4.1 Calling subprograms 12. .

4.2 Communication with other applications 12. .

4.3 Controlling system variables 13. .

4.4 Polling system variables 13. .

4.5 Access to inputs and outputs 14. .

4.6 Technology packages 14. .

5 Useful information and tips 15. .

5.1 Runtime variable 15. .

5.2 Parallel activation of outputs 15. .

Submit Interpreter

4 of 15

SubmitInt R1 02.00.01 en

1 KR C and Submit interpreter

5 of 15

SubmitInt R1 02.00.01 en

1 KR C and Submit interpreter
Two tasks run on the KR C controller:

-- Robot interpreter (execution of robot motion programs)

-- Controller interpreter (execution of a parallel control program)

1.1 Meaning and purpose of the controller interpreter

The controller interpreter can take over robot operator and control tasks. As this program
runs entirely independently of the selected robot program, it can be used to handle all manner
of different control tasks. These might include, for example, the control and monitoring of a
cooling water circuit, the monitoring of safety equipment or the integration of additional
peripheral devices. This renders the use of an additional PLC unnecessary for smaller
applications as these tasks can be accommodated by the KR C.

1.2 Startup function

Depending on the specific application, the interpreter program can be started manually or
automatically. The Startup function ensures that the Submit interpreter is started
automatically each time the KR C robot controller is booted. The file entered as the start file
in the $custom.dat file is started.

In the basic configuration of the software the program SPS.SUB is used
$custom.dat file: $PRO_I_O[]=”/R1/SPS()”

If the A10 arc welding equipment is being used, ARCSPS.SUB is entered here:
$PRO_I_O[]=”/R1/ARCSPS()”

1.3 What the Submit interpreter cannot do

The cycle time of the controller interpreter cannot be determined exactly as it must share the
system performance of the KR C with the robot interpreter (which has a higher priority). This
is why the controller interpreter is not suitable for time--critical applications; the outputs could
have a reaction time of up to 50 ms! A separate PLC should be used in such cases.

For cases such as these we recommend use of the KUKA products “CoDeSys” or
“Multiprog--ProCoNos”. Detailed descriptions of these products can be found in
the KUKA Roboter GmbH product catalog.

Submit Interpreter

6 of 15

SubmitInt R1 02.00.01 en

2 Programming the Submit interpreter

Submit files always have the file extension *.sub and are displayed exclusively in Expert
mode. Program names for Submit files can consist of any characters up to a maximum length
of eight characters.

A Submit file may only be viewed, created and edited at Expert level. The controller
interpreter can be started and run at both user levels.

Unlike in the robot, program execution in the controller is carried out in quick cycles (PLC
approach).

2.1 Expansion and modification of the SPS.SUB program

As the Submit file sps.sub is supplied as part of the basic configuration, it can be frequently
modified and expanded by the user. If the control program in question is still running, it must
first be stopped. It is then necessary to switch to Expert mode and load the desired control
program into the editor. The modifications or expansions can now be carried out. The
specially prepared program folds user.init and user.plc (open via the menu item “Act
FOLD op”) should be used for this purpose.

The editor window must now be closed. This automatically starts the compiler. Once
compilation has been successfully completed, the program is saved, following a request for
confirmation, and is ready for execution. It is started by selecting it or via the menu item “Start
Submit interpreter”.

Example sps.sub program

DECLARATIONS

INI

AUTOEXT INIT

ARC!= PLC INIT

USER INIT ; <-- Open this fold!
; Insert expansions for one--off settings following booting

; e.g. initialization of process variables

LOOP

AR10 PLC

TOUCH PLC

GRP PLC

SPOT PLC

USER PLC; <-- Open this fold!
; Insert expansions for cyclical program execution

ENDLOOP

2.2 Creating and editing your own Submit program

To create a Submit file, it is necessary to switch first to Expert mode. All the loaded files are
then displayed at the robot level. These are:

-- Program files (extension *.src)

-- Program data files (extension *.dat)

-- Submit files (extension *.sub)

2 Programming the Submit interpreter (continued)

7 of 15

SubmitInt R1 02.00.01 en

To create a new Submit file, press the softkey “NEW”. This generates an input box in which
the name of the new Submit file and the extension *.sub must be entered. Once these entries
have been made, the Enter key is pressed and the (at this stage still empty) Submit file is
created. In order to enter commands in the Submit file, the file is highlighted using the blue
bar and the editor is opened by pressing the softkey “EDIT”. The Submit file is now displayed
and commands can be entered.

Program structure:

The structure is very similar to the program structure at the robot level. Data types,
declarations and initializations are thus also handled in the same way as for a robot program.

Basic structure of a Submit program:

Declaration

Initialization

Program

2.3 Command set

Almost all KR C commands that have nothing to do with robot motions can be used in the
Submit interpreter (exception: asynchronous motions can also be used in the Submit
program). The robot interpreter has sole responsibility for the control of robot motions. This
also means that a Submit program cannot call robot programs (*.src) as direct
subprograms:

Permissible controller interpreter commands:

LOOP

FOR loop

WHILE loop

REPEAT loop

IF branch

SWITCH statement

GOTO

EXIT (to terminate a loop)

Serial interface commands

READ / WRITE

If you want controller interpreter programs to run permanently in the background, this must
be programmed using a program loop (Loop...Endloop).

To prevent this cycle from being interrupted, WAIT commands and wait loops should not
be programmed.

Submit Interpreter

8 of 15

SubmitInt R1 02.00.01 en

Example of the negative effects of a WAIT command:
Def PLC()

loop

$out[1] = true

wait sec 20

$out[2] = true

if $in[1] = = true then

$out[10] = true

endif

endloop

end

The WAIT command between the two output commands stops the program loop for 20
seconds. This means that the subsequent polling of the input $in[1] is no longer reliable, as
this input is only polled briefly once every 20 seconds.

Commands which are only to be executed once after booting the system can be entered
before the LOOP command. This allows basic initializations, for example, that are to take
effect once the robot has been booted.

2.3.1 Access to system variables

The Submit interpreter can obtain read and write access to many system variables at any
time, even if they are being used at the same time by a robot program.

2.3.2 Access to robot inputs and outputs

The controller interpreter can also access the inputs and outputs of the KR C, since they are
nothing other than mapped system variables. As with the robot interpreter, the file
IOSYS.INI is responsible for the external assignment of the inputs and outputs.
Downstream bus systems can also be addressed simply via the controller interpreter.

2 Programming the Submit interpreter (continued)

9 of 15

SubmitInt R1 02.00.01 en

2.4 Compiler

If new program code is entered in the editor, it must always be compiled. Only then can the
code be run as a Submit program. The compiler is started automatically when the editor
window is closed. All commands are checked and translated into machine commands. If the
entered Submit program is free of errors, the Submit file is available and can be selected and
started.

Incorrect entries:If the code contains incorrect entries, incompatible logic or basic motion
command calls (PTP, LIN, CIRC), it cannot be translated by the compiler. In such cases an
error message is generated in the user interface message window and an error file (*.err)
is created. This file lists the errors that have been found along with their error number.

It is not possible to start an incorrectly compiled Submit file. Instead, the compiler
generates an ERR file. This file may not be visible immediately in the listing, but then
becomes visible following the command “Refresh display”.

Submit Interpreter

10 of 15

SubmitInt R1 02.00.01 en

3 Operator control

3.1 Manual start

The Submit interpreter can be started manually in the “Configure” menu. Following the
manual start, the Submit program specified in the file $custom.dat is selected and
executed independently of the status of the programs on the robot side of the KR C.

The status flag for the interpreter in the GUI turns green once the interpreter has started.

Submit flag

Start by means of manual selection:

Any available Submit program (and any robot program) can be selected using the bar and
started by selecting the command “Select”. This procedure is thus independent of the file
specified in $custom.dat.

3.2 Manual stop

The Submit interpreter can be stopped again manually via the menu: Configure-->SUBMIT
Interpreter-->1 Stop. All activity of the interpreter is now stopped.

The status flag for the interpreter in the GUI turns red again, indicating that the interpreter
has stopped.

3 Operator control (continued)

11 of 15

SubmitInt R1 02.00.01 en

3.3 Visualization of program execution for fault analysis

With the KR C in its initial state, the execution of a controller program is not displayed.
Instead, according to what has been selected, the program window of the GUI displays either
file directories or a selected robot program. In order to be able to view also the execution of
a running Submit program, the system variable $interpreter can be set to the value “0”
via the menu Monitor-->Variable-->Modify. The Submit program, complete with the main run
pointer, is now visible in the program window.

It is not possible to switch this function back again in software version 2.3. To do this, the
KR C must be rebooted.

From software version 3.2. onwards, the display can be switched back to the robot program
by resetting the system variable to its original value “1”.

Submit Interpreter

12 of 15

SubmitInt R1 02.00.01 en

4 Examples

4.1 Calling subprograms

Controller subprograms (*.sub) can also be called from an interpreter program. The program
call has the same syntax as that for a motion program in the robot interpreter.

Example program call of another Submit program:
Def Sub()

ext unterpro()

loop

unterpro() ; Calls the controller program unterpro.sub

endloop

end

Example of a robot program call from the Submit program:
In this example, the Cell program of the robot interpreter is triggered by the initialization
command Run Cell in the controller interpreter.

Controller
Robot

SPS.SUB

CELL.SRC()
LOOP

CELL.SRC

LOOP

CASE 1

CASE 2

CASE 3ARC20 PLC
USER PLC

ENDLOOP ENDLOOP

Program1.SRC

Program2.SRC

Program3.SRC

INI
DECLARATIONS
INI
AUTOEXT INIT
CWRITE($CMD,STAT,MODE,
”RUN/R1/CELL()”)

4.2 Communication with other applications

The KR C flags (notices) can be used to enable the exchange of binary information between
a running robot program and an interpreter program. Any flag can be set by the controller
interpreter and read by the robot interpreter. This allows the exchange of information
between running programs and a certain degree of synchronization.

Principle of data exchange:

Steuer.sub Roboter.src

$flag[1]$flag[1]=true wait for $flag[1] = = true

4 Examples (continued)

13 of 15

SubmitInt R1 02.00.01 en

4.3 Controlling system variables

Flashing display
Def PLC()

$TIMER_STOP[10]=FALSE ;Timer(10) is started

loop

USER PLC

if $timer[10]>500 then

$phgcont=15 ;Set contrast to “15”

endif

if $timer[10]>1000 then

$phgcont=0 ;Set contrast to “0”

$timer[10]=0 ;Reset counter to “0”

endif

endloop

end

The program switches the contrast of the GUI screen between the maximum and minimum
values using the system variable $phgcont. The time control functions are performed by
Timer(10).

4.4 Polling system variables

Axis monitoring
Def PLC()

real Angle_A1

loop

USER PLC

Angle_A1 = $AXIS_ACT.A1

if ((Angle_A1 > -60.0) AND (Angle_A1 < 60.0)) THEN

$OUT[3] = True

$OUT[4] = True

else

$OUT[3] = False

$OUT[4] = False

endif

endloop

end

In this program, the system variable $AXIS_ACT.A1 is polled and evaluated. In this way,
the current axis position of A 1 can be determined by the Submit program at any time. As
soon as A 1 moves outside the range +/-- 60.0 degrees, the output variables $OUT[3] and
$OUT[4] are set to “false”. The output variables can now be assigned through to the
interfaces or be polled by the robot program and linked according to the specific application.

Submit Interpreter

14 of 15

SubmitInt R1 02.00.01 en

4.5 Access to inputs and outputs

Running light controller
Def PLC()

int b,a ;Declaration of variables b and a

$timer_stop[10] = false ;Start Timer(10)

b = 2

a = 1

USER PLC

loop

if $timer[10]>500 then

$out[b] = true ;Activate output (b)

$out[a] = false ;Deactivate previous output

b = b + 1

a = a + 1

$timer[10] = 0 ;Reset timer

endif

if b > 16 then ;Reset counter variable b

$out[a] = false ;Reset last output

b = 2

a = 1

endif

endloop

This program switches outputs 1 to 16 on and off, one after the other. The time control
functions are performed by Timer(10). If the outputs are now viewed with the aid of the menu
item “Overview output”, the effect is like that of a running light.

4.6 Technology packages

If the supplied ARC Tech technology package is to be integrated into the KR C software, the
Submit program arcsps.sub must be selected first. This setting must be integrated into
the Startup function if technology packages are used, otherwise the correct functioning of
these program components cannot be assured.

Entry that must be made in the file $custom.dat: $PRO_I_O[]=”/R1/ARCSPS()”

5 Useful information and tips

15 of 15

SubmitInt R1 02.00.01 en

5 Useful information and tips

5.1 Runtime variable

Some variables cannot be accessed. Examples include the local variables of a robot
program: so--called runtime variables.

5.2 Parallel activation of outputs

Particular care should be taken when activating outputs. The KR C compiler does not check,
for example, whether the robot and controller interpreters are simultaneously accessing the
same output. Parallel access by several programs (e.g. by the robot and controller
interpreters simultaneously) to a single output may, in certain cases, be desired and is
translated without errors by the compiler. As the robot and controller interpreters are not
synchronized, this may result, in the case of incorrect programming, in undesired output
signals at the KR C interfaces.

Careful attention must be paid when assigning the output variables. Since
the output variables may be used to control machines, devices or safety
equipment in the vicinity of the robot, an incorrectly set output can have
fatal consequences.

1

Index

Index -- i

Symbols

$AXIS_ACT, 13

$custom.dat, 5
$interpreter, 11
$phgcont, 13

A

ARC Tech, 14
ARCSPS.SUB, 5

B

Basic initializations, 8
Basic motion commands, 9

C

Cell program, 12
Commands, 7

Compiler, 9
Cooling water circuit, 5

E

Error file, 9
Expert level, 6

F

Flags, 12

I

IOSYS.INI, 8

N

Notices, 12

P

PLC, 5

S

Software version, 11

SPS.SUB, 5

Status flag, 10

T

Task, 5

Timer, 13, 14

U

user.init, 6

user.plc, 6

W

WAIT command, 8

	1 KR C and Submit interpreter
	1.1 Meaning and purpose of the controller interpreter
	1.2 Startup function
	1.3 What the Submit interpreter cannot do

	2 Programming the Submit interpreter
	2.1 Expansion and modification of the SPS. SUB program
	2.2 Creating and editing your own Submit program
	2.3 Command set
	2.4 Compiler

	3 Operator control
	3.1 Manual start
	3.2 Manual stop
	3.3 Visualization of program execution for fault analysis

	4 Examples
	4.1 Calling subprograms
	4.2 Communication with other applications
	4.3 Controlling system variables
	4.4 Polling system variables
	4.5 Access to inputs and outputs
	4.6 Technology packages

	5 Useful information and tips
	5.1 Runtime variable
	5.2 Parallel activation of outputs

