KUKA

SOFTWARE
KRL (KUKA ROBOT LANGUAGE)

Programming User Messages

Expert Level

e Copyright KUKA Roboter GmbH

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of the
publishers.

Other functions not described in this documentation may be operable in the controller. The user has no claim to these functions, how-
ever, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrep-
ancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation
is checked on a regular basis, however, and necessary corrections will be incorporated in subsequent editions.

Subject to technical alterations without an effect on the function.

Length of documentation: 8 pages
PD Interleaf

02.97.01 So/Al/20/KRLMeldErzeug en

KUKA

Contents

1 Programming USEr meSSagesuuiutiiennennenennnn..
1.1 Definition Of termMS e
111 NOtIficatioN MESSAgESottt e e
1.1.2 SHALUS MBS SAGES . . i ittt ettt e
1.13 Acknowledgement MESSAgESot
1.14 Dialog QUENIES . ..ot e
1.15 SIMUIALION .
1.2 APPICAION . .
1.2.1 NOtIfication MESSAgES it e e
1.2.2 SHAtUS MBS SAGES . . ittt ettt e
1.2.3 Acknowledgement MESSAgESottt
1.2.4 DIalog QUEKIES . ..ot e
1.2.5 SIMUIALION .
1.3 Sample program "MSG_DEMO.SRC™
14 Variables and declarations i

O NNOOOOUTAWWWWwWwww

02.97.01

So/Al/20/KRLMeldErzeug en

1

1.1

111

1.1.2

1.1.3

1.14

115

KUKA

Programming user messages

Within application programs and technology packages (KRL) it is possible to display freely
definable messages on the KCP. A basic distinction is made here between notification mes-
sages, status messages, acknowledgement messages and dialog queries. The mostimpor-
tant for this is a standardized interface between the kernel system and the user environment
(GUI). The various message types require specific handling, a further distinction being made
between messages with database access (TECH packages) and simple user messages
without database access.

For commissioning and test purposes, the so-called simulation function provides a mecha-
nism for simulating logic expressions by means of an AND operation with a variable that can
be controlled directly from the user interface. This mechanism can be usefully employed
above all in loop exit conditions.

Definition of terms

Notification messages

Simplest type of message with an informative character only. Execution of the current ap-

{D plication program is not interrupted. The messages do not have to be acknowledged. It is
also conceivable for them to be used for indicating the progress of a program in a special GUI
window. Notification messages cannot be cleared from the KRL level.

Status messages

e Status messages have an informative character and are reset quasi-automatically. Execu-
tion of the current application program can be conditionally interrupted.

Status messages cannot be acknowledged; they have to be explicitly canceled by the origi-
nator (application program). Only one active message at a time can be displayed.

Acknowledgement messages

Acknowledgement messages indicate disturbances in the progress of a program. Only after
the active message has been explicitly acknowledged can the program be resumed. The
message is automatically canceled when it is acknowledged.

Dialog queries

By means of dialog queries, the operator is prompted to choose between freely definable
alternatives. The result of the operator input is stored in a corresponding KRL variable. With
the operator input the dialog is automatically closed and the interrupted program is contin-
ued.

Simulation

Similar to the familiar simulation key in WAIT FOR instructions, the simulation key is automat-
ically displayed. Pressing the simulation key clears the corresponding message and sets an
associated boolean KRL variable to FALSE. Program execution is not interrupted. This simu-
lation mechanism can be used for specifically exiting loops.

02.97.01

So/Al/20/KRLMeldErzeug en 3

KUKA

Application

The interface between the KRL application program and the user environmentis represented
by the so-called MSG structure. To enable it to cater for all possible applications, the MSG

structure is of rather complex configuration.
STRUC MSG_T
BOOL VALID

Triggers the message (TRUE). VALID is treated differ-
ently depending on the type of message (see Sections

1.1.1to0 1.1.4).
BOOL RELEASE

causes a status message to be cleared.

MSG_TYP TYP,
Definition of the message type
Possible values: #NOTIFY
#STATE
#QUIT
#DIALOG

CHAR MODUL[12]

notification message
status message
acknowledgement
message

dialog query

Text variable containing an unambiguous module identi-
fier (module key) serving the purpose of database ac-
cess. If MODUL is a blank string, KEY is interpreted as
the message text. If KEY contains a wildcard for PARAM,
the two of them are combined. If MODUL is not blank
and no entry can be found in the database with a corre-
sponding key, then KEY will be output as the message
text, though KEY cannot be combined with a parameter.

CHAR KEY[40]

Text variable containing an unambiguous key to the mes-
sage text of the database. If MODUL is a blank string or
is not found in the database, it is displayed in the mes-
sage window under originator and the KEY is interpreted

directly as the message text.

MSG_PRM_TYP PARAM_TYP

Type - definition of PARAM
Possible values:

#WORDS

#KEY

CHAR PARAM[20]

#VALUE

numeric value or text
without database access.
PARAM is combined
directly with the key.
SMSG.PARAM[] is ig-
nored.

database key;

if there is no correspond-
ing entry in "MODUL”; the
key is taken as the pa-
rameter string.

Additional parameter that is displayed in combination with
the actual message text. The content of PARAM is inter-
preted as a function of PARAM_TYP.

So/Al/20/KRLMeldErzeug en

KUKA

CHAR DLG_FORMATI[70]

Format string defining the softkey labels for dialog quer-
ies. The individual softkeys are separated by ’]”> Up to 7
softkeys can be assigned, each of them representing a
possible dialog response. It is important to remember
that each softkey label may be no more than about 10
characters long and that only the required number of
softkeys is defined in each case. The possible responses
should have a meaningful relation to the message text:
e.g.. MSG.MODUL="PART1.SRC”

MSG.KEY= "Repeat ?”’

MSG.DLG_FORMAT= "Yes|No™
The softkeys are dynamically inserted into the softkey
bar at unassigned positions.

INT ANSWER Supplies the result of a dialog query. The returned value
indicates which softkey has been pressed. The softkeys
are counted in ascending order as defined in the format
string DLG_FORMAT, starting at 1. In the example given
above, pressing the softkey "No”’would therefore return
ANSWER =2.

Default setting of the MSG structure:

DECL MSG_T $MSG_T=
{ VALID FALSE, RELEASE FALSE ,TYP #NOTIFY, MODUL[] "} KEY[] >’
PARAM_TYP #VALUE, PARAM["> DLG_FORMAT][] 2 ANSWER }

The simulation mechanism works with a very simple interface implemented by means of the
following global variables:

BOOL $LOOP_CONT

Simulation result that can be used as a loop exit condi-
tion. $LOOP_CONT goes FALSE as soon as the simula-
tion key is pressed. It must be switched to TRUE before
simulation is triggered by $LOOP_MSG.

CHAR $LOOP_MSG[60]

Triggers the simulation as soon as the value is not equal to
a blank string and displays the text contained together with
the simulation key.

It must be reset to a blank string in order to end the simula-
tion.

Each type of message and the simulation mechanism necessitates a specific sequence in
the application program (handshake). This chronological sequence is represented in Sec-
tions 1.1.1 - 1.1.5.

1.2.1 Notification messages
(1) Fill the $MSG_T structure.
(2) The message is triggered by setting $MSG_T.VALID = TRUE.
(3) The message is now displayed.
(4) Wait for $SMSG_T.VALID==FALSE.

(5) Continue with the next message.

02.97.01 So/Al/20/KRLMeldErzeug en 5

1.2.2

1.2.3

1.2.4

Status messages

(1)
(2)
3)
(4)

()
(6)
(7)
(8)

Fill the $MSG_T structure.

Set $SMSG_T.RELEASE = FALSE.

The message is triggered by setting $MSG_T.VALID = TRUE.
The status message is now displayed.

G

G

G

Clear the status message by setting $MSG_T.RELEASE=TRUE.
The message is no longer visible.

Wait for SMSG_ T.VALID== FALSE.

Continue with the next message.

Acknowledgement messages

(1)
(2)
3)
(4)

()

(6)

(7)
(8)

Fill the $MSG_T structure.

Stop program execution.

The message is triggered by setting $MSG_T.VALID = TRUE.
The acknowledgement message is now displayed.

G

G

G

The acknowledgement message can be cleared if required by setting $MSG_T.RE-
LEASE=TRUE.

When the operator acknowledges the message, $MSG_T.VALID is automatically reset to
FALSE.

As soon as $SMSG_T.VALID goes FALSE, program execution can be resumed.

Continue with the next message.

Dialog queries

(1)
(2)
3)
(4)

(5)
(6)

(7)

(8)

Stop program execution.

Fill the $MSG_T structure.

The message is triggered by setting $MSG_T.VALID = TRUE.

The dialog query is now displayed.

G

G

G

The dialog query can be cleared if required by setting MSG.RELEASE=TRUE.

When the operator acknowledges the message, SMSG_T.VALID and $MSG_T.RELEASE
are automatically reset to FALSE.

As soon as $MSG_T.VALID goes FALSE, the result of the query can be retrieved from
$MSG_T.ANSWER and program execution can be resumed.

Continue with the next message.

02.97.01

So/Al/20/KRLMeldErzeug en 6

1.2.5 Simulation

(1)
(2)
3)
(4)

(5)

(6)
(7)
(8)

Set $LOOP_CONT=TRUE.

The simulation is triggered by setting SLOOP_MSG= "message text’’
The simulation key and the message text are now displayed.

The simulation can be actively ended by setting $LOOP_MSGJ[] ="
G

G

G

As soon as the operator presses the simulation key, SLOOP_CONT is automatically set to
FALSE.

The simulation is ended by filling $LOOP_MESSAGE([] with BLANKS.
The simulation message and the softkey "SIMULATION’are no longer displayed.

Continue with the next simulation or message.

1.3 Sample program "MSG_DEMO.SRC”

DECL INT ANSWER

DECL INT OFFSET

DECL STATE_T STATE
DECL MSG_T EMPTY_MSG

EMPTY_MSG={MSG_T: VALID FALSE,RELEASE FALSE,TYP #NOTIFY,MODUL[] ~
" KEY[] ””’PARAM_TYP #VALUE,PARAM][] ”””;DLG_FORMATI] " ANSWER 0}

$MSG_T=EMPTY_MSG ;reinitialization
$MSG_T.MODUL[=""

$MSG_T.KEY[][="DEMO: QUIT-MESSAGE + %1”
$MSG_T.PARAM[]="PARAM”’
$MSG_T.PARAM_TYP=#WORDS
$MSG_T.TYP=#QUIT

$MSG_T.VALID=TRUE ;trigger

WHILE $MSG_T.VALID ;wait for acknowledgement
WAIT SEC 0.05

ENDWHILE

$MSG_T=EMPTY_MSG ;reinitialization
$MSG_T.MODUL[=""
$MSG_T.KEY[]="DEMO: DIALOG + %1”
$MSG_T.PARAM[]="PARAM”’
$MSG_T.PARAM_TYP=#KEY
SMSG_T.TYP=#DIALOG
$MSG_T.DLG_FORMAT[]="A|B|C”
$MSG_T.VALID=TRUE ;trigger

WHILE $MSG_T.VALID ;wait for answer

02.97.01

So/Al/20/KRLMeldErzeug en 7

1.4

WAIT SEC 0.05

KUKA

ANSWER=$MSG_T.ANSWER

$MSG_T=EMPTY_MSG ;reinitialization
$MSG_T.MODUL[]=""

$MSG_T.KEY[]=’"DEMO: DIALOG ANSWER = %1 ;"%1”” symbolizes a wildcard for the
parameter string

OFFSET=0

SWRITE($MSG_T.PARAM[],STATE,OFFSET,’%d”;ANSWER)

;formated output of the preceding

;dialog answer in the parameter string

$MSG_T.PARAM_TYP=#VALUE ;wait in order to reliably display the message
$MSG_T.VALID=TRUE ;trigger

WHILE $MSG_T.VALID

WAIT SEC 0.05

ENDWHILE

oo SIMULATION== == — == oo
$LOOP_CONT=TRUE ;default setting

$LOOP_MSG[]="HELLO I the SIMULATION of $IN[10] !"";trigger

WHILE $LOOP_CONT or $IN[10] ;simulation of the exit condition $IN[10]==TRUE
ENDWHILE

$LOOP_MSG[]=" ”

END

Variables and declarations

Implemented in $operate.dat and $option.dat at the control level.
ENUM MSG_TYP NOTIFY, STATE, QUIT, DIALOG
ENUM MSG_PRM_TYP VALUE, WORDS, KEY

STRUC MSG_T BOOL VALID, BOOL RELEASE, MSG_TYP TYP, CHAR MODUL[12],
CHAR KEY[40], MSG_PRM_TYP PARAM_TYP, CHAR PARAM[20], CHAR DLG_FOR-
MAT[70], INT ANSWER

DECL MSG_T $MSG_T={ VALID FALSE, RELEASE FALSE, TYP #NOTIFY, MODUL[] ”
7 KEY[] ") PARAM_TYP #VALUE, PARAM[] ”””; DLG_FORMATI] ””; ANSWER 0, }

BOOL $LOOP_CONT=FALSE
CHAR $LOOP_MSG[60]

02.97.01

So/Al/20/KRLMeldErzeug en 8

