
QC Games
Technology Overview



Foundation



Team History

• The QC Games team has decades of experience building and operating 
multiplayer experiences from Dark Age of Camelot to DA: Inquisition

• Developed rich, critically acclaimed multiplayer experiences

• Supported games as live services

• Operated games at massive scale

• Built Breach from the ground up with an engineering team of ~10 over 3 years

DAOC

Released: Oct 2001

SW:Galaxies

Released: Jun 2003

Warhammer

Released: Sep 2008

SW:TOR

Released: Dec 2011

DA: Inquisition

Released: Nov 2014

Mass Effect

Released: Nov 2007



Technology Stack Goals

• The team set out with the following goals for QC Games’ technology

• Ease of use and robustness: from writing code and developing content to live 
operations
• Focus on developer friendly workflows to maximize the team’s velocity

• Create a tech stack that can be enhanced and maintained for the life of the service
• QC Games’ technology needed to support constant updating post launch, which is critical for 

live service games

• Platform Agnostic
• All technology decisions from game engine to service architecture were made to support a 

number of a potential client platforms
• The service stack can support multiple client platforms simultaneously enabling cross play 

and cross progression seamlessly
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Client Platform
• Integrate with each distribution 

platform to distribute/patch the 
client binaries and content

• Custom authentication integration 
per platform to establish ownership 
and identity

• Platform identity is used to “link” 
platform accounts with an internal 
account to support platform 
agnostic cross play and cross 
progression

• Future platforms will be integrated 
in this way (Epic, Discord, PS4, etc.)
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Game Simulation Architecture

• Fully native Unreal 4 client/server 
implementation for real-time game 
simulation

• Well established out-of-the-box 
development workflows

• Documented and supported by the 
Unreal community and Epic

• The QC Games team builds custom 
systems on top of the core Unreal 
workflows

• Using native Unreal network 
protocols for real-time client/server 
communication
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Client
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Core Breach Requirements

• The following core requirements drove the architecture of Breach’s 
client and server
• Online Co-op/PvP action RPG combat where positioning, timing, animation 

frames, and aim matter.

• Real weapon and projectile collision checks determine if hits occur, to feel like 
a true action game.

• Server authoritative for a fair game.

• Must feel responsive, similar to a local offline game, even though it’s a 
server/client game.

• Allow designers to generate 100s of abilities and combat features quickly and 
efficiently.



Development Toolbox

• The Breach Gameplay team began with a very robust toolbox of designer 
facing features that they have used to build up more complex combat 
behaviors
• A timeline system to choreograph a series of events/animations/collision checks/etc

while some ability is executing
• Re-use that same timeline system for executing buffs/debuffs
• A fully featured data-driven gameplay RPG stats system.
• Re-usable systems for targeting and querying gameplay state
• Action game staples: Beams, AOEs, auras, projectiles
• User friendly tools to edit and debug combat data

• All of these systems are incredibly data-driven and QC Games’ designers 
can build and iterate abilities, creatures, AIs, level objectives very quickly, 
before we begin building any final art for them



Client Prediction

• In order for the game to feel responsive, Breach’s combat system runs nearly all the same logic on 
the client and server in parallel
• The client predicts everything
• When an ability is requested it will play animations and spawn projectiles immediately without waiting for  

the server
• When projectiles hit it will play explosions and flinches without the servers authorization

• This can cause mispredictions and the Breach Gameplay team has architected numerous 
techniques to reduce the side-effects
• All combat systems are created with the idea that everything will run on both the client and server, which 

means that we usually get the same outcome
• Use expected client latency to offset the playback of timelines on the client/server so that they better line up
• Detect predicted actions and abort them within a certain time window if no matching server action arrives
• A gameplay state debugger that allows us to analyze how state changes on the client and server frame by 

frame, to debug and resolve issues involving misprediction
• Most mispredictions are actually quite benign and are difficult for a player to ever notice – these can safely be 

ignored
• In a few rare cases, mispredictions are particularly awful even if they happen extremely rarely, and the system 

accepts round trip latency instead. Knocking a character back through the air is one example.
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Service Goals

• Provide latency tolerant services to the game server and client

• Highly scalable framework for massive scale

• Single global shard for all platforms to support cross play and cross 
progression

• Programmer friendly model for developing highly distributed and 
scalable services



Service Architecture
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• SignalR communication provides bi-directional 
communication with the client and game 
servers

• Horizontally scalable ASP.NET front-end 
provides security and identity services

• Project Orleans based back-end provides 
horizontal scale and a programming model for 
building highly distributed services

• MongoDB used for persistence of all account 
data
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Project Orleans

• An actor model framework used to 
develop highly distributable objects across 
a cluster of nodes

• Allows for trivial horizontal scale of the 
entire service

• All “Actors” communicate asynchronously 
in a location transparent way
• It doesn’t matter if the component I am 

talking to is in the same process or on 
another host in another data center

• All services are authored using this 
framework including:
• Platform authentication, commerce, chat, 

friends, matchmaking, account persistence 
and versioning, game server host 
management and scaling, and many more
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Easy Setup and Operation

• Goals
• Operations is a constant task, so, as with every aspect of QC Games’ stack, we 

wanted to ensure operations workflows are robust and easy to use
• Easy scalability is paramount

• Deployments need to be quick and fault tolerant

• Environment setup should be easy and repeatable

• Alerting is critical for a small ops team

• Monitoring and logging needs to be easily accessible for diagnosing problems

• Thoroughly test operations processes by running the development environments using 
the same setup as production



Deployment Infrastructure

• Quickbuild and Rundeck used 
to automate every aspect of 
deployment/operations
• QC Games’ Operations has a 

single operation to deploy a 
build to the cluster and restart 
the service

• VPC used to connect 
development with AWS

• IAM used to control access to 
AWS environments

• S3 used for build storage

• Code Deploy used to manage 
pushing builds to the entire 
cluster
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Runtime Infrastructure

• AWS Load-Balancers used to distribute 
incoming client connections

• Auto-scale groups used to easily scale 
components up and down

• Game server scaling is done 
automatically by the service based on 
player load

• Using a managed shared and 
replicated MongoDB cluster for all 
persistence

• This entire setup can be stamped out 
using a “shard creation” script to 
ensure a reproducible and repeatable 
environment
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Key Operational Tools

• Splunk
• Centralized logging that collects logs from every host in the 

cluster
• Powerful search engine for diagnosing issues

• Backtrace
• Client crash reporting service
• Critical to find high frequency crashes so we can improve the 

stability of the game

• Prometheus/Grafana
• Dashboards for monitoring the service

• Zabbix
• Watches key metrics for signs of issues and notifies PagerDuty

• PagerDuty
• Notifies all on-call operations personnel when there is a critical 

issue

• DeltaDNA
• Analytics platform used to store all telemetry
• Dashboard provide quick visibility into KPIs
• Combined with Tableau and various other analytics tools for 

deep understanding of how the business is performing
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Productivity is Key

• Goals
• Easy setup for artists, designers, and engineers

• Simple daily workflow for getting your environment up to date

• Easy download and play for fast iteration

• Surface issues as quickly as possible through CI/CD



Workflow Tools

• Unreal 4
• World class tools for creating content and systems
• Data-driven systems for maximum flexibility and 

design creativity

• QC Now
• Simple tool to update your working environment 

or download and play the latest builds

• Continuous Integration
• Quickbuild used for all build automation
• Always building code and content to find issues 

fast

• Continuous Deployment
• Unattended deployment of nightly builds to 

development environments in AWS
• Simple process to start a new full build for testing


