
QC Games
Technology Overview

Foundation

Team History

• The QC Games team has decades of experience building and operating
multiplayer experiences from Dark Age of Camelot to DA: Inquisition

• Developed rich, critically acclaimed multiplayer experiences

• Supported games as live services

• Operated games at massive scale

• Built Breach from the ground up with an engineering team of ~10 over 3 years

DAOC

Released: Oct 2001

SW:Galaxies

Released: Jun 2003

Warhammer

Released: Sep 2008

SW:TOR

Released: Dec 2011

DA: Inquisition

Released: Nov 2014

Mass Effect

Released: Nov 2007

Technology Stack Goals

• The team set out with the following goals for QC Games’ technology

• Ease of use and robustness: from writing code and developing content to live
operations
• Focus on developer friendly workflows to maximize the team’s velocity

• Create a tech stack that can be enhanced and maintained for the life of the service
• QC Games’ technology needed to support constant updating post launch, which is critical for

live service games

• Platform Agnostic
• All technology decisions from game engine to service architecture were made to support a

number of a potential client platforms
• The service stack can support multiple client platforms simultaneously enabling cross play

and cross progression seamlessly

High Level
Architecture

Breach High Level Architecture

Unreal 4
Server

QC Services

Persistence

Steam

Enmasse

Nexon

Client

Backend

QC Platform

Logging

Metrics/
Monitoring

Analytics

Crash
Reporting

Operational Services

AWS

Deployment

Game Client

Client Platform

Core Service

Unreal 4
Client

Launcher/
Auth Unreal/Discord

Xbox

PS4

Etc.

Client/Server
Architecture

Client Platform
• Integrate with each distribution

platform to distribute/patch the
client binaries and content

• Custom authentication integration
per platform to establish ownership
and identity

• Platform identity is used to “link”
platform accounts with an internal
account to support platform
agnostic cross play and cross
progression

• Future platforms will be integrated
in this way (Epic, Discord, PS4, etc.)

Steam

Enmasse

Nexon

Client Platforms

Future

Unreal 4
Client

Launcher/
Auth

Game Simulation Architecture

• Fully native Unreal 4 client/server
implementation for real-time game
simulation

• Well established out-of-the-box
development workflows

• Documented and supported by the
Unreal community and Epic

• The QC Games team builds custom
systems on top of the core Unreal
workflows

• Using native Unreal network
protocols for real-time client/server
communication

Unreal 4
Client

Unreal 4
Server

Client

Backend

Core Breach Requirements

• The following core requirements drove the architecture of Breach’s
client and server
• Online Co-op/PvP action RPG combat where positioning, timing, animation

frames, and aim matter.

• Real weapon and projectile collision checks determine if hits occur, to feel like
a true action game.

• Server authoritative for a fair game.

• Must feel responsive, similar to a local offline game, even though it’s a
server/client game.

• Allow designers to generate 100s of abilities and combat features quickly and
efficiently.

Development Toolbox

• The Breach Gameplay team began with a very robust toolbox of designer
facing features that they have used to build up more complex combat
behaviors
• A timeline system to choreograph a series of events/animations/collision checks/etc

while some ability is executing
• Re-use that same timeline system for executing buffs/debuffs
• A fully featured data-driven gameplay RPG stats system.
• Re-usable systems for targeting and querying gameplay state
• Action game staples: Beams, AOEs, auras, projectiles
• User friendly tools to edit and debug combat data

• All of these systems are incredibly data-driven and QC Games’ designers
can build and iterate abilities, creatures, AIs, level objectives very quickly,
before we begin building any final art for them

Client Prediction

• In order for the game to feel responsive, Breach’s combat system runs nearly all the same logic on
the client and server in parallel
• The client predicts everything
• When an ability is requested it will play animations and spawn projectiles immediately without waiting for

the server
• When projectiles hit it will play explosions and flinches without the servers authorization

• This can cause mispredictions and the Breach Gameplay team has architected numerous
techniques to reduce the side-effects
• All combat systems are created with the idea that everything will run on both the client and server, which

means that we usually get the same outcome
• Use expected client latency to offset the playback of timelines on the client/server so that they better line up
• Detect predicted actions and abort them within a certain time window if no matching server action arrives
• A gameplay state debugger that allows us to analyze how state changes on the client and server frame by

frame, to debug and resolve issues involving misprediction
• Most mispredictions are actually quite benign and are difficult for a player to ever notice – these can safely be

ignored
• In a few rare cases, mispredictions are particularly awful even if they happen extremely rarely, and the system

accepts round trip latency instead. Knocking a character back through the air is one example.

Service
Architecture

Service Goals

• Provide latency tolerant services to the game server and client

• Highly scalable framework for massive scale

• Single global shard for all platforms to support cross play and cross
progression

• Programmer friendly model for developing highly distributed and
scalable services

Service Architecture

MongoDB

ASP.Net
Front-End

ASP.Net
Front-End

ASP.Net
Front-End

• SignalR communication provides bi-directional
communication with the client and game
servers

• Horizontally scalable ASP.NET front-end
provides security and identity services

• Project Orleans based back-end provides
horizontal scale and a programming model for
building highly distributed services

• MongoDB used for persistence of all account
data

Orleans
Back-End

Orleans
Back-End

Orleans
Back-End

SignalR
Communication

Project Orleans

• An actor model framework used to
develop highly distributable objects across
a cluster of nodes

• Allows for trivial horizontal scale of the
entire service

• All “Actors” communicate asynchronously
in a location transparent way
• It doesn’t matter if the component I am

talking to is in the same process or on
another host in another data center

• All services are authored using this
framework including:
• Platform authentication, commerce, chat,

friends, matchmaking, account persistence
and versioning, game server host
management and scaling, and many more

Orleans Node

Actor

Actor

Actor

Actor

Orleans Node

Actor

Actor

Actor

Actor

Operations

Easy Setup and Operation

• Goals
• Operations is a constant task, so, as with every aspect of QC Games’ stack, we

wanted to ensure operations workflows are robust and easy to use
• Easy scalability is paramount

• Deployments need to be quick and fault tolerant

• Environment setup should be easy and repeatable

• Alerting is critical for a small ops team

• Monitoring and logging needs to be easily accessible for diagnosing problems

• Thoroughly test operations processes by running the development environments using
the same setup as production

Deployment Infrastructure

• Quickbuild and Rundeck used
to automate every aspect of
deployment/operations
• QC Games’ Operations has a

single operation to deploy a
build to the cluster and restart
the service

• VPC used to connect
development with AWS

• IAM used to control access to
AWS environments

• S3 used for build storage

• Code Deploy used to manage
pushing builds to the entire
cluster

VPC

IAM

S3

Rundeck Code Deploy

Quickbuild

Corp Infrastructure AWS

Runtime Infrastructure

• AWS Load-Balancers used to distribute
incoming client connections

• Auto-scale groups used to easily scale
components up and down

• Game server scaling is done
automatically by the service based on
player load

• Using a managed shared and
replicated MongoDB cluster for all
persistence

• This entire setup can be stamped out
using a “shard creation” script to
ensure a reproducible and repeatable
environment

Auto-Scale
Group

Load-Balancer

Front-End EC2
Instances

Front-End EC2
Instances

Front-End EC2
Instances

Auto-Scale
Group

Front-End EC2
Instances

Front-End EC2
Instances

Orleans EC2
Instances

MongoDB
Atlas

Managed
Shard

Auto-Scale
Group

Front-End EC2
Instances

Front-End EC2
Instances

Game Server
EC2 Instances

Key Operational Tools

• Splunk
• Centralized logging that collects logs from every host in the

cluster
• Powerful search engine for diagnosing issues

• Backtrace
• Client crash reporting service
• Critical to find high frequency crashes so we can improve the

stability of the game

• Prometheus/Grafana
• Dashboards for monitoring the service

• Zabbix
• Watches key metrics for signs of issues and notifies PagerDuty

• PagerDuty
• Notifies all on-call operations personnel when there is a critical

issue

• DeltaDNA
• Analytics platform used to store all telemetry
• Dashboard provide quick visibility into KPIs
• Combined with Tableau and various other analytics tools for

deep understanding of how the business is performing

Development
Workflow

Productivity is Key

• Goals
• Easy setup for artists, designers, and engineers

• Simple daily workflow for getting your environment up to date

• Easy download and play for fast iteration

• Surface issues as quickly as possible through CI/CD

Workflow Tools

• Unreal 4
• World class tools for creating content and systems
• Data-driven systems for maximum flexibility and

design creativity

• QC Now
• Simple tool to update your working environment

or download and play the latest builds

• Continuous Integration
• Quickbuild used for all build automation
• Always building code and content to find issues

fast

• Continuous Deployment
• Unattended deployment of nightly builds to

development environments in AWS
• Simple process to start a new full build for testing

