

US011464243B1

(12) United States Patent

Manchuliantsau

(54) SPENT BREWERS' YEAST BASED ALTERNATIVE MEAT

- (71) Applicant: USARIUM INC., San Francisco, CA (US)
- (72) Inventor: Aleh Manchuliantsau, San Francisco, CA (US)
- Assignee: USARIUM INC., San Francisco, CA (73)(US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 17/571,995
- (22) Filed: Jan. 10, 2022

Related U.S. Application Data

- (63) Continuation of application No. 17/475.664, filed on Sep. 15, 2021.
- (60) Provisional application No. 63/221,755, filed on Jul. 14. 2021.
- (51) Int. Cl.

A23J 1/18	(2006.01)
A23L 31/10	(2016.01)
A23J 3/22	(2006.01)
A23J 3/26	(2006.01)

- (52) U.S. CL (2013.01); A23J 3/26 (2013.01); A23L 31/10 (2016.08)
- (58) Field of Classification Search CPC A23J 1/18; A23J 3/227; A23J 3/26; A23L 31/10 See application file for complete search history.

(56)**References** Cited

U.S. PATENT DOCUMENTS

2.162.73	29 A	6 1939	Levinson et al.	
2.235.61	13 A	3 1941	Grelek	
-2.881.03	76 A	4 1959	Sair	
3.142.53	71 A	7 1964	McAnelly et al.	
			Harrison et al.	
3.586.66	52 A	6 1971	O'Connor	
3.723.13	31 A	3 1973	Bixby et al.	
			Strommer	A23J 3 26
				426 453
3.761.35	53 A	9 1973	Noe et al.	
		1 1974		
		1 1975		
		6 1975		
		9 1975		
	-	9 1975		
			Barham et al.	
		4 1976		
			Morehouse et al.	
			Wiese et al.	
			Cornelius et al.	
		10 1977		
			Goodnight, Jr. et al.	
1.0 0001 1.			sooving an er er an	

US 11,464,243 B1 (10) Patent No.:

(45) Date of Patent: Oct. 11, 2022

4.185.123		1 1980	
4.212.799	Λ	7.1980	Nuzzoto et al.
4.310.558	Α	L 1982	Nahm, Jr.
4.315.034	Α	2 1982	Levinson et al.
4.423.082	Λ	12 1983	Bauernfeind et al.
4.435.319	Λ	3 1984	Pearce
4,454,804	Α	6 1984	McCulloch
4,505,936	Α	3 1985	Meyers et al.
4.515.818	Α	5 1985	MacDonald et al.
4.551.335	Δ	11 1985	Canella et al.
4.794.011	Δ	12 1988	Schumacher
4,901,635	Α	2 1990	Williams
4,937,085	Α	6 1990	Cherry et al.
4,973,490	Α	11 1990	Holmes
5.097.017	Λ	3 1992	Konwinski
5.270.062	Λ	12 1993	Buchs
5.296.253	Λ	3 1994	Lusas et al.
5.328.562	Α	7 1994	Rafferty et al.
5,346,714	Α	9 1994	Peters
5.391.384	Δ	2 1995	Mazza
5.436.023	Δ	7 1995	Avera
5.685.218	Δ	11 1997	Kemper
5,702,746	Α	12 1997	Wiik
5.725.902	Α	3 1998	Lesueur-Brymer et al.
5,888,307	Α	3 1999	Solheim
5.912.034	Δ	6 1999	Martin et al.
5.976.387	Δ	11 1999	Higo et al.
5,976,594	Α	11 1999	LaFollette
6,039,999	Α	3,2000	Bakshi et al.
6,045,851	Α	4 2000	Cross
6.132.791	Δ	10 2000	Fox
6.165.349	Δ	12 2000	Madar
6.197.081	BI	3 2001	Schmidt
6.534,105	B2	3 2003	Kartchner
6,635,301	BL	10 2003	Howsam
		(Com	tinued)
		(c on	(muco)

FOREIGN PATENT DOCUMENTS

BY	10488 C1	4 2008
CA	968214 A	5 1975
	(Cont	inued)

OTHER PUBLICATIONS

Gibson et al. Can Inst. Food Technol. J. 3: 113-115 (Year: 1970).* Gibson, D.; Dwivedi, B. Production of Meat Substitutes from Spent Brewers' Yeast and Soy Protein, Can. Inst. Food Technol. J. 1970. 3.113-115.

Dietary Guidelines for Americans, Ninth edition, 2020, available at https://www.dietaryguidelines.gov.

(Continued)

Primary Examiner Hamid R Badr

(74) Attorney, Agent, or Firm - K&L Gates LLP

(57)ABSTRACT

Alternative meat from a material comprising spent brewers' yeast as the primary ingredient is provided herein. The product contains from 20% to 80% dry weight spent brewers' yeast, has a meaty flavor and texture, and a reduced RNA content, making it safe for human consumption.

20 Claims, 4 Drawing Sheets

(56) **References** Cited

U.S. PATENT DOCUMENTS

6,800,308 B2	10/2004	Maenz et al.
6,905,600 B2	6 2005	Lee, Jr.
6.955.831 B2	10 2005	Higgs et al.
7.575.771 B2	8 2009	Ciantar et al.
7.771.699 B2	8 2010	Adams et al.
7.932.065 B2	4 2011	Medoff
7,968,760 B2	6 2011	Lee, Jr.
7,989,011 B2	8 2011	Newkirk et al.
7.989.592 B2	8 2011	Ganjyai et al.
8.017.171 B2	9 2011	Sample
8.017.820 B2	9 2011	Foody et al.
8.048.652 B2	11/2011	Fichtali et al.
8.057.639 B2	11 20 H	Pschorn et al.
8.133.393 B2	3 2012	Stuart
8,192,769 B2	6 2012	Wester et al.
8.278.081 B2	10 2012	Schmidt
8.293.297 B2	10 2012	Oreuti et al.
8.365.433 B2	2 2013	Orura
8,372,464 B2	2 2013	Dierking
8.415.122 B2	4 2013	Medoff et al.
8,481,677 B2	7 2013	Barrows et al.
8,506,716 B2	8 2013	Ahring et al.
8.529.976 B2	9 2013	McMindes et al.
8.603.558 B1	12 2013	Almutairi
8.642.109 B2	2 2014	Baumer et al.
8,685,485 B2	4 2014	McMindes et al.
8.728.542 B2	5 2014	Pickardt et al.
8,735,544 Bt	5 2014	Prevost et al.
8.820.328 B2	9 2014	Ehling et al.
8.945.352 B2	2 2015	Medoff
8.951.778 B2	2 2015	Medoff et al.
8,986,774 B2	3 2015	Ganjval
9,084,948 332	7 2015	Mazza et al.
9,109,180 B2	8 2015	Wolf et al.
9.125.962 32	9 2015	Michalek et al.
9.179.692 B2	11 2015	Trass et al.
9.206.453 B2	12 2015	Medoff et al.
9.259.017 B2	2 2016	Dhalleine et al.
9.370.200 B2	6 2016	Gibbons et al.
9.856.601 B2	1 2018	Stromberg
9,878,355 B2	1 2018	Norris et al.
9,907,322 B2	3 2018	McMindes et al.
10.039.306 B2	8 2018	Vrljie et al.
10.051.878 B2	8 2018	Helling et al.
10.172.380 B2	1 2019 2 2019	Varadan et al.
10.214.751 32	4 2019	Nilsen et al.
10.264.805 B2 10.299.500 B2	5 2019	Spinelli et al. Passe et al.
10.344.342 32	7 2019	Kusuda et al.
10.550.352 B2	2 2020	
10.645.950 B2	5 2020	Manchuliantsau et al.
2002 0155206 A1	10 2002	Orlando
2002 0174780 AL	11 2002	Clifford
2002 0064145 AL	4 2003	
2004 0067289 AL	4 2004	
2004 0081742 A1	4 2004	
2004 0185148 A1	9 2004	
2004 0202771 AI	10 2004	
2004 0224065 A1	11 2004	
2004 0237859 AL	12 2004	Hartmann
2005/0095346 AL	5 2005	Borders et al.
2005/0136162/A1	6 2005	Kvist et al.
2005/0249860/A1	11 2005	Konecsni et al.
2006/0040022/A1	2 2006	Bouraoui
2006/0093718/A1	5 2006	Jurkovich et al.
2006/0216397 AI	9 2006	Kerkman
2007/0014896/A1	1 2007	Wong et al.
2007/0087107/AU	4 2007	Borders et al.
2007/0092616/AU	4 2007	Witte et al.
2007/0172540/A1	7 2007	Neece et al.
2007/0269580/A1	11 2007	
2008/0008815/AU	1 2008	Cho
2008/0008816 A1	1 2008	Singh et al.
2008/0008817 AI		-
2000 0000000 .10	1 2008	Singh et al.
2008/0008820 A1	1 2008	Singh et al. Singh et al.

2008/0138495	$\Delta I =$	6 2008	Barraelough et al.
2008/0160132	AL -	7 2008	Silver et al.
2008 0233266	AL	9 2008	Boerboom
2009 0053800	AL.	2 2009	Friend et al.
2009 0155444	$\Delta \Gamma_{-}$	6 2009	Yakubu et al.
2009 0155447	$\Delta I =$	6 2009	Moore et al.
2009/0155448	$\Delta I =$	6 2009	Solorio et al.
2010/0021609	ΔL	1.2010	Mattson et al.
		5 2010	
2010/0112136	ĄĮ –		Ward et al.
2010/0166940	ΔL	7 2010	McMindes et al.
2011/0027433	$\Delta I =$	2 2011	Ruf et al.
2011/0081689	$\Delta I =$	4 2011	Flanegan et al.
2011 0172142	ΔI	7 2011	Smith et al.
2011 0212239	AI -	9 2011	Carin et al.
2011/0309559	AΓ	12/2011	Franke et al.
2011/0311599	$\Delta I =$	12/2011	Boursier et al.
2012/0093994	AΓ	4 2012	Hsich et al.
2012/0171351	ΔI	7 2012	Solorio
2012 0294986	AI -	11 2012	Choromanskl et al.
2012/0301598	$\Delta \Gamma_{\pm}$	11 2012	Karges et al.
2013/0052682	$\Delta I =$	2 2013	Medoff et al.
2013/0109065	ΔL	5 2013	Godfroid et al.
2013/0243904	AL -	9 2013	Cordle et al.
2013 0287909	AL -	10/2013	Lewis et al.
2014 0088330	ΔI	3 2014	Powell et al.
2014 0096764	$\Delta \Gamma_{-}$	4 2014	Komplin et al.
2014 0134316	$\Delta \Gamma_{-}$	5 2014	Jincks et al.
2014/0141127	AL -	5 2014	Jincks et al.
2014/0273140	AL -	9 2014	Langhauser
2014/0328984	AL	11/2014	Legault
2015/0017312	AI -	1 2015	
			Tegel
2015/0041574	AI –	2 2015	Anderson
2015 0056324	$\Delta \Gamma_{-}$	2 2015	Cecava et al.
2015/0181907	$\Delta I =$	7 2015	Baumer et al.
2015/0223498	AL -	8 2015	Gu et al.
2015/0250212	AL -	9 2015	Diaz et al.
2015 0367298	AL -	12 2015	Wenger
2016 0017444	ÂÎ -	1 2016	
			Medoff et al.
2016 0108187	ΔI	4 2016	Wendeln et al.
2016 0143337	$\Delta I =$	5 2016	Passe
2016/0295897	ΔL	10/2016	Lis et al.
2016/0309743	AL -	10/2016	Spinelli et al.
2016 0360770	AL	12 2016	Sherlock et al.
2017/0105438	AL.	4 2017	Ajami et al.
2017 0226439	AL -	8 2017	Nguyen et al.
2017 0226535	$\Delta \Gamma_{-}$	8 2017	Tudman
2017 0226695	$\Delta I =$	8 2017	Rowlands et al.
2017/0280756	AΓ	10/2017	Jaramillo Freydell et al.
2017/0303558	AL -	10/2017	Eisner et al.
2018/0310590	AL -	11/2018	Manchuliantsau
2018 0327792	ΔI	11 2018	Brown et al.
2019 0000120	AI –	1 2019	flossen et al.
2019/0075820	ΔL	3 2019	Redl et al.
2019/0153122	$\Delta I =$	5 2019	Mateus et al.
2019/0183155	AL -	6 2019	Manchuliantsau
2019 0223475	AL.	7 2019	Manchuliantsau et al.
2019 0223476		7 2019	Manchuliantsau et al.
	AL -		
2020 0060308	AI –	2 2020	Manchuliantsau et al.
2020/0138055	$\Delta \Gamma_{-}$	5 2020	Schein
2020/0260758	ΔL	8 2020	Manchuliantsau et al.
	- •		·····

FOREIGN PATENT DOCUMENTS

CA	1177323 A	11 1984
CA	2652384 C	11 2014
CA	3014516 A1	9 2017
CN	102742661 A	10 2012
EP	0092443 A1	10/1983
EP	0455889 331	3 1995
EP	2218497 AU	8 2010
EP	3494934 AU	6 2019
GB	116357 A	6 1918
KR	19930019123 A	10 1993
KR	100248275 B1	3 2000
KR	100767809 331	10/2007
RU	2297155 C2	4 2007
RU	2631827 CT	9 2017
WO	WO 2009 129320 A2	10/2009
WO	WO 2009 134791 A	11 2009

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO	WO 2010 135679 A1	11/2010
WO	WO 2011 107760 A2	9/2011
WO	WO 2017 075078 A1	5 2017
WO	WO 2019 102248 A1	5 2019
WO	WO 2019 106072 A1	6 2019

OTHER PUBLICATIONS

USDA Food Availability (Per Capita) Data System, 2021, available at https://www.ersusda.gov/data-products/food-availability-per-capitadata-system.

J.C. Edozien et al., Effects of high levels of yeast feeding on uric acid metabolism of young men. Nature vol. 228, Oct. 10, 1970, p. 180.

Marson, G.V.; Saturno, R.P.; Comunian, T.A.; Consoli, J.; Machado, M.T.D.C.; Hubinger, M.D., Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Res. Int. 2020, 136, 109365. ISSN 0963-9969, https://doi.org/10. 1016/j.foodres.2020.109365.

Canepa, A.; Pieber, M.; Romero, C.; Tohá, J.C. A method for large reduction of the nucleic acid content of yeast, Biotechnol. Bioeng, 1972, vol. 14, 173-177.

Trevelyan, W.E., Chemical methods for the reduction of the purine content of baker's yeast, a form of single-cell protein, J. Sci. Food Agric, 1976, vol. 27, 225-230.

Jaeger A, Arendt EK, Zannini E, Sahin AW, Brewer's Spent Yeast (BSY), an Underutilized Brewing By-Product. Fermentation, 2020; 6(4):123. https://doi.org/10.3390/fermentation6040123.

ADM, PRO-FAM* 974, Isolated Soy Protein, 066-974, Jun. 26, 2008, 1 page.

Da Graca Costa do Nascimento et al., "Use of sesame oil cake (*Sesamum indicum L.*) on corn expanded extrudates". Food Research International, 2012, vol. 45, pp. 434-443.

Sivaramakrishnan et al., "Chapter 13 Edible Oil Cakes", Biotechnology for Agro-Industrial Residtses Utilisation, 2009, pp. 253-271. Suknark et al., "Physical Properties of Directly Expanded Extrudates Formulated from Partially Defatted Peanul Flour and Different Types of Starch", Food Research International, 1997, vol. 30, No. 8, pp. 575-583.

Sokolowska et al., "Characteristics of rapeseed oilcake using nitrogen adsorption". International Agrophysics, 2013, 27, pp. 329-334. Stein, "Nutritional Value of High Fiber Coproducts from the Copra, Palm Kernel, and Rice Industries in Diets Fed to Pigs", Journal of Animal Science and Biotechnology, 2015, vol. 6, No. 56, 9 pages. Suttirak et al., "Potential Application of Ascorbic Acid, Citric Acid and Oxalic Acid for Browning Inhibition in Fresh-Cut Fruits and Vegetables", Walailak J Sci & Tech, 2010, vol. 7, No. 1, pp. 5-14. Melvily et al., "Inhibition of Enzymatic Browning in Foods and Beverages", Critical Reviews in Food Science and Nutrition, 1992, vol. 32, No. 3, 253-273.

Narita et al., "Degradation Kinetics of Chlorogenic Acid at Various pH Values and Effects of Ascorbic Acid and Epigallocatechin Gallate on Its Stability under Alkaline Conditions", J. Agric. Food Chem., 2013, vol. 61, pp. 966-972.

Salgado et al., "Sunflower Protein Concentrates and Isolates Prepared from Oil Cakes Have High Water Solubility and Antioxidant Capacity", J Am Oil Chem Soc. 2011, 88, pp. 351-360.

Wong, Jacqueline, "Food Waste Diversion Options Analysis in Pomona, CA", A Thesis presented to the faculty of California State Polytechnic University, Pomona, 2018, 99 pages.

Bhatt et al., "From food waste to value-added surplus products (VASP): Consumer acceptance of a novel food product category", J Consumer Behav., 2017, pp. 1-7.

Pakhomova O.N., "Development and use of a functional food fortifier from rapeseed cake". Thesis for application for academic degree of Ph.D., Orel. 2014. (English abstract included at p. 1. corresponds to Pakhomova O.N., "Development and use of functional rapeseed meal enrichment agent" as cited in the Dec. 5, 2019 International Search Report and Written Opinion of the ISA for international Application No. PCT US2019 044258). International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT-US2018/030084 dated Aug. 9, 2018.

Shepon et al., "Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes", Environ. Res. Lett. 11, Oct. 2016, 8 pages.

Rodrigues et al., "Increasing the Protein Content of Rapeseed Meal by Enzymatic Hydrolysis of Carbohydrates", BioResources, 9(2), 2014, pp. 2010-2025.

Brugger et al., "Next Generation Texturized Vegetable Proteins", Food Marketing & Technology, Apr. 2017, pp. 20-24.

Brookfield CT3. Tenure Analyzer, Operating instructions, Manual No. M08-372-C0113, Brookfield Engineering Laboratories, Inc., 56 pages.

Vestjens, Laura, MSc Thesis Biobased Chemistry and Technology, Sunflower-based protein fractions for food applications, Wageningen University & Research, Jul. 7, 2017.

Berk, Zeki, Chapter 6: Isolated Soybean Protein, Technology of Production of Edible Flours and Protein Products from Soybeans, EAO Agricultural Services Bulletin No. 97, http://www.fao.org.3 (0532e)0532e07.htm, accessed Oct. 31, 2019.

Deshpande et al., "Optimization of a chocolate-favored, peanut-soy beverage using response surface methodology (RSM) as applied to consumer acceptability data". Swiss Society of Food Science and Technology, 41, 2008, pp. 1485-1492.

Ren et al., "Isolation and Characterization of Sunflower Protein Isolates and Sunflower Globulins", Information Tech. and Agricultural Eng., AISC 134, 2012, pp. 441-449.

Perednya et al., "The Fodder Production's Extrusion Technologies", Vestnik NIIMZh Journal No. 4 (20), 2015, pp. 60-63, (English abstract included at p. 63 corresponds to Perednya V.I. et al. "Extrusion technology in feed production" as cited in the Dec. 5, 2019 International Search Report and Written Opinion of the ISA for International Application No. PCT US2019 044258).

International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT-US2019 044258 dated Dec. 5, 2019.

Markov, S.A. et al., "Features of Fractions Chemical Compound of Sunflower Oileakes and Meal at them Reagentless Division". Evestiia VUZov. Pishchevaia Tekhnologiia, No. 1, 2012, pp. 29-31. (English abstract included at p. 31 corresponds to Markov S.A. et al., "Features of the chemical composition of fractions of sunflower meal and meal during their reagent-free separation" as cited in the Dec. 5, 2019 International Search Report and Written Opinion of the ISA for International Application No. PCT US2019 044258).

Andrianova E.N., "Chlorogenic Acid and Productivity of Broilers," All-Russian Research and Technological Poultry Institute (VNITIP), No. 9, 2015, pp. 17-21, (English abstract included at p. 17 corresponds to Andrianova cited in the Dec. 5, 2019 International Search Report and Written Opinion of the ISA for International Application No. PCT US2019 044258).

Meal WholeSeed Feeding, National Sunflower Association, accessed Feb. 20, 2020 from https://www.sunflowernsa.com/wholeseed.ll/ page.

Sunflower as a Feed. National Sunflower Association, accessed Feb. 20, 2020 from https://www.sunflowernsa.com/wholeseed/sunflower-as-a-feed/, 6/pages.

Sunflower Protein, AURI, Agricultural Utilization Research Institute, 2018, 2 pages.

Wildermuth, et al., "Chlorogenic Acid Oxidation and Its Reaction with Sunflower Proteins to Form Green-Colored Complexes", Comprehensive Reviews in Food Science and Food Safety, 2016, vol. 15, pp. 829-843.

ABC about PLANETARIANS, video aired Mar. 19, 2018. KSTP-TV. Minneapolis, MN, accessed from https://www.youtube.com/ watch?v_5df9_0Wvnjl&feature_youtu.be.

"Planetarians Aiming to Fight Childhood Obesity with Food Waste". Sustainable Brands, Nov. 16, 2017, accessed from https: sustainablebrands.com read waste-not planetarians-aiming-to-fightchildhood-obesity-with-food-waste, 5 pages.

(56) References Cited

OTHER PUBLICATIONS

Stone, Dawna, "Do Planetarians Sunflower Chips Have More Protein Than Beet??", Bold Business, Feb. 27, 2018, accessed from https://www.boidbusiness.com/nutrition/planetarians-sunflower-chipsmore-protein-beef, 6 pages.

Feeding the Future, Successful Farming, Sep. 17, 2019, accessed from https://www.agriculture.com/news/business/feeding-the-future, 9/pages.

Today's Dictician, Great Valley Publishing Company, Inc., May 2018, vol. 20, No. 5, 69 pages.

Planetarians: "Animal Agriculture Cannof Feed the World", Oct. 26, 2018, vegconomist, accessed from https://vegconomist.com/interviews/planetarians-animal-agriculture-cannot-feed-the-world , 8 pages.

Burwood-Taylor, Louisa, 2019 AgFunder AgriFood Tech Innovation Awards Winners Announced, AgFunder Network Partners, Mar. 21, 2019, accessed from https://agfundernews.com/2019-agfunderinnovation-awards-winners-announced.html, 4 pages.

PLANFTARIANS Sunflower Chips, National Sunflower Association, Dec. 1, 2018, accessed from https://www.sunflowernsa.com/ magazine articles/default.aspx?, 4 pages.

Askew, Katy, "Planetarians ties-up with Barilla, Amadori to innovate with up-cycled sunflower flour", Mar. 19, 2019, FoodNavigator, com, accessed from https://www.foodnavigator.com/Article/2019/ 03/19/Planetarians-ties-up-with-Barilla-Amadori-to-innovate-withup-cycled-sunflower-flour?utm/source/copyright&utm/medium/ OnSite&utm/campaign/copyright, 5/pages.

Murray, Sarah, "Accelerators speed development of promising food start-ups". Financial Times, Mar. 11, 2019, accessed from https: www.fl.com.content.778c9f5e-294e-11c9-9222-7024072222bc, 4 pages. Peters, Adele, "Everything you need to know about the booming business of fighting food waste". Jun. 19, 2019, accessed from https://www.fastcompany.com/90337075/inside-the-booming-businessof-fighting-food-waste, 7/pages.

Leinonen et al., "Lysine Supply Is a Critical Factor in Achieving Sustainable Globai Protein Economy", Frontiers in Sustainable Food Systems, Apr. 2019, vol. 3, Article 27, 11 pages.

Ajandouz, et al., "Nonenzymatic Browning Reaction of Essential Amino Acids: Effect of pH on Caramelization and Maillard Reaction Kinetics", J. Agric, Food Chem. 1999, 47, 5, 1786-1793. English abstract only.

Lin et al., Extrusion Process Parameters, Sensory Characteristics, and Structural Properties of a High Moisture Soy Protein Meat Analog, Journal of Food Science, vol. 60, No. 3, 2002, pp. 1066-1072.

Solae™ Product Standard, Supra® 320, Isolated Soy Protein, Version: 1.0 Issue Date Apr. 2, 2010, 4 pages.

Uriman Grain Product Specification Sheet for Non-GMO U.S. Soybean Meal, Select 5CF, Dec. 7, 2010, 1 page.

International Feed, Sunflower Seed Meal Product Sheet, Feb. 17, 2015, 1 page.

Sotillo et al., Corn Meal-Sunflower Meal Extrudates and Their Physicochemical Properties, Journal of Food Science, vol. 59, No. 2, 1994, pp. 432-435.

Yue et al., Native and Succinylated Sunflower Proteins Use in Bread Baking, Journal of Food Science, vol. 56, No. 4, 1991, pp. 992-995. Reddy et al., Supplementation of Wheat Muflins with Dried Distillers Grain Flour, Journal of Food Quality, 9, 1986, pp. 243-249. Arepa with Soy, Mintel, Record BD 6281913, Jan. 25, 2019, http://www.gnpd.com. 2 pages.

International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT US2020 052385 dated Dec. 7, 2020.

* cited by examiner

FIG. 1

FIG. 2

FIG. 3

FIG. 4

SPENT BREWERS' YEAST BASED ALTERNATIVE MEAT

CROSS-REFERENCE TO RELATED APPLICATIONS

This present application is a continuation of U.S. patent application Ser. No. 17/475.664, filed on Sep. 15, 2021, which application claims the benefit of U.S. provisional patent application Ser. No. 63/221,755 filed on Jul. 14, 2021, ¹⁰ the contents of which are incorporated by reference into this specification. This application also claims the benefit of U.S. Provisional Patent Application No. 63/221,755, filed on Jul. 14, 2021, the contents of which are also incorporated by reference into this specification. ¹⁵

FIELD

The present disclosure relates to alternative meat made from spent brewer's yeast (SBY) as the primary ingredient with the inclusion of more than 20%.

BACKGROUND

Spent brewer's yeast is a by-product of the brewing 25 industry. The spent yeast cells are removed at the end of the bulk fermentation. A small amount of it is used to start the next batch of fermentation, the remaining part of the spent yeast is discarded. This discarded yeast is high in nutrients, in particular proteins, vitamins, and minerals, as well as 30 containing functional and biologically active compounds such as polyphenols, antioxidants, β -glucans and manno-proteins.

Production of meat substitutes from spent brewers yeast and soy protein as promising applications was described by 35 D. L. Gibson and B. K. Dwivedi in Can Inst. Food Technol. J Vol 3, No. 3, 1970. Side effects concerns of high levels of yeast feeding on uric acid metabolism of young men, expressed by J. C. Edozien et al in Nature vol 228, 1970 set safe limits of Ribonucleic acid (RNA) for human diet at 2 g 40 per day. Spent brewer's yeast contains about 10-15% of RNA, limiting the use of SBY in food applications by 20% inclusion.

Currently, the majority of the spent brewers' yeast is composted or used as animal feed. Animal agriculture contributes to climate change with greenhouse gas emissions, new methods of processing spent brewers' yeast for direct human consumption are required.

SUMMARY

Alternative meat from a material comprising spent brewers' yeast as the primary ingredient is provided herein. The product contains from 20% to 80% dry weight spent brewers' yeast, has a meaty flavor and texture, and a reduced 55 RNA content, making it safe for human consumption.

It is understood that the inventions disclosed and described in this specification are not limited to the aspects summarized in this Summary. The reader will appreciate the foregoing details, as well as others, upon considering the ⁶⁰ following detailed description of various non-limiting and non-exhaustive aspects according to this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

65

The features and advantages of the examples, and the manner of attaining them, will become more apparent, and the examples will be better understood, by reference to the following description of embodiments taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a chicken skewer made according to Example $5 \pm \#1$.

FIG. 2 is a hop-char burger made according to Example #2.

FIG. 3 is a beef stew made according to Example #3:

FIG. 4 is a pulled pork lemongrass veggie bowl made 10 according to Example #4.

The exemplifications set out herein illustrate certain embodiments, in one form, and such exemplifications are not to be construed as limiting the scope of the appended claims in any manner.

DETAILED DESCRIPTION OF NON-LIMITING EMBODIMENTS

Various examples are described and illustrated herein to and use of the disclosed methods, systems, compositions, and products. The various examples described and illustrated herein are non-limiting and non-exhaustive. Thus, the invention is not limited by the description of the various non-limiting and non-exhaustive examples disclosed herein. Rather, the invention is defined solely by the claims. The features and characteristics illustrated and/or described in connection with various examples may be combined with the features and characteristics of other examples. Such modifications and variations are intended to be included within the scope of this specification. As such, the claims may be amended to recite any features or characteristics expressly or inherently described in, or otherwise expressly or inherently supported by, this specification, Further, Applicant reserves the right to amend the claims to affirmatively disclaim features or characteristics that may be present in the prior art. The various examples disclosed and described in this specification can comprise, consist of, or consist essentially of the features and characteristics as variously described herein.

Any patent, publication, or other disclosure material identified herein is incorporated herein by reference in its entirety unless otherwise indicated but only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material expressly set forth in this specification. As such, and to the extent necessary, the express disclosure as set forth in this specification supersedes any conflicting material incorporated by reference herein. Any material, or portion thereof, 50 that is said to be incorporated by reference into this specification, but which conflicts with existing definitions, statements, or other disclosure material set forth herein, is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material. Applicant reserves the right to amend this specification to expressly recite any subject matter, or portion thereof, incorporated by reference herein.

Reference throughout the specification to "various examples," "some examples," "one example," or "an example", or the like, means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example. Thus, appearances of the phrases "in various examples," "in some examples," "in one example", or "in an example", or the like, in places throughout the specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more examples. Thus, the particular features, structures, or characteristics illustrated or described in connection with one example may be combined, in whole or in part, with the features structures, or characteristics of one or more other examples.⁵ without limitation. Such modifications and variations are intended to be included within the scope of the present examples.

In this specification, unless otherwise indicated, all numerical parameters are to be understood as being prefaced and modified in all instances by the term "about." in which the numerical parameters possess the inherent variability characteristic of the underlying measurement techniques used to determine the numerical value of the parameter. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter described herein should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

All ranges recited herein are inclusive of the endpoints of 2^{0} the recited ranges. For example, a range of "1 to 10" includes the endpoints 1 and 10. Also, any numerical range recited herein includes all sub-ranges subsumed within the recited range. For example, a range of "1 to 10" includes all

4

more." unless otherwise indicated, even if "at least one" or "one or more" is expressly used in certain instances. Thus, the foregoing grammatical articles are used herein to refer to one or more than one (i.e., to "at least one") of the particular identified elements. Further, the use of a singular noun includes the plural, and the use of a plural noun includes the singular, unless the context of the usage requires otherwise.

In this specification, unless otherwise indicated, all percentages (e.g., weight percent protein, percent moisture) are to be understood as being based on weight.

Alternative meat from a material comprising spent brewers' yeast as the primary ingredient is provided herein. The product contains 30% dry weight spent brewers' yeast, 10% dry weight Soy protein isolate, has a meat-like appearance and palatability, 24.4% by weight total protein content similar to animal meat and 0.099% RNA by weight, which is unexpected.

Such a low RNA content allows safely eating up to 10 times the FDA recommended daily amount of protein, which is equivalent to about 2 kg of animal meat, which is 8 times higher than average daily meat consumption from red meat, poultry, and fish (boneless weight) in the US according to USDA.

TABLE 1

	Spent brewers' yeast mitreated	Enzymatic hydrolysis Marson, 2020	Phosphate solution, heat shock, dialysis or washing Canepa, 1972	Alkaline Hydrolysis and heat treatment, Trevelyan, 1976	Current invention, mix of 30% SBY and 10% Soy protein isolate	Upper safe level of RNA per day. g
RNA level, % RNA level for 50 g protein (according to FDA RDA based on 2000 cal dict), g	10,00-15,00	3,33-5,00	1.67-2.00	0.57-2.39	0,20	~2
RNA level for 60 g protein (average amount of protein consumed from red meat, poulity, and fish (boneless weight) in the US), g		4,00-6,00	2.00-2.40	0.68-2.87	0,24	-: 2
Safe amount of protein for daily consumption based on RNA content, g		20,00-30,03	50.00-59.88	41.84-175.44	492.93	
Maximum amount of meat to cat safely per day (based on animal equivalent containing 26 g protein per 100 g), kg		0.08-0.12	0.19-0.23	0.16-0.67	L90	

sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value equal to or less than 10. Any maximum numerical limitation recited in this specification is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited. All such ranges are inherently described in this specification.

The grammatical articles "a." "an." and "the." as used herein, are intended to include "at least one" or "one or Spent brewers' yeast is a broad term, which describes spent yeast derived from multiple sources. In some embodiments, the source of spent yeast is chosen from spent brewers' yeast, spent distillers' yeast, surplus yeast from ethanol manufacturing, bakers' yeast, nutritional yeast. In some embodiments, the spent yeast is derived from various strains of Saccharomycetes class, such as Saccharomyces cerevisiae, Saccharomyces pastorianus, Saccharomyces carlsbergensis, etc.

Although currently spent brewer's yeast is mostly used for human consumption in the dried form, the use of liquid spent brewer's yeast (containing about 8-11% solids) and liquid concentrated spent brewer's yeast (containing about 15-25% solids) may benefit the manufacturing of high moisture meat analogs, simultaneously reducing costs for 10

55

drying. In some embodiments, the spent yeast can be used in the dry, concentrated, liquid form, or a combination thereof. In some embodiments, the spent yeast may contain from about 10% to about 100% solids. In some embodiments, the primary ingredient can be debittered, autolyzed, or hydro- $^{-5}$ lyzed.

Co-extrusion of spent brewers' yeast with secondary protein ingredients clears the aftertaste, adds meaty flavor and BBQ-like color, and reduces costs for debittering and drying. Low RNA concentration allows to increase the inclusion of spent brewers' yeast and to tweak the appearance and the taste towards chicken, fish, beef, and pork-like applications, reducing costs for secondary ingredients such as maskers, bitter blockers, flavors, and colors resulting in costs cheaper than animal meat.

In various examples, the product can comprise 80% of the spent brewers' yeast and 20% secondary protein ingredients. In various examples, the product can comprise 70% of the spent brewers' yeast and 30% secondary protein ingredients. In various examples, the product can comprise 60% of the ²⁰ spent brewers' yeast and 40% secondary protein ingredients. In various examples, the product can comprise 50% of the spent brewers' yeast and 50% secondary protein ingredients. In various examples, the product can comprise 50% of the spent brewers' yeast and 60% secondary protein ingredients. In various examples, the product can comprise 40% of the spent brewers' yeast and 60% secondary protein ingredients. In various examples, the product can comprise 30% of the spent brewers' yeast and 70% secondary protein ingredients. In various examples, the product can comprise 20% of the spent brewers' yeast and 80% secondary protein ingredients.

Co-extrusion of spent brewers' yeast with secondary ³⁰ protein ingredients in their native form helped to improve succulent mouthfeel because of native fiber, capable of retaining more moisture without adding gums and binders. In some embodiments, the secondary protein ingredient is chosen from vegetable protein in its native, concentrated or ³⁵ isolated form, microbial protein, lungal protein, animal protein, cultured protein, or a combination thereof.

Despite having meat-like characteristics, spent brewers' yeast-based food products may benefit from the inclusion of secondary ingredients enhancing the sensory properties of ⁴⁰ the finished product. In some embodiments, the spent brewers' yeast food product may contain fat, carbohydrate, flavor, color, or a combination thereof. In some embodiments, the ingredients may contain 1-15% Fat, 0.5-2% dry weight Calcium Chloride, 0.5-1.5% dry weight gums (such ⁴⁵ as Sodium Alginate), 0.2-0.6% dry weight Lecithin.

Given different serving sizes set for different food products in some embodiments, the RNA content in the food product is easier to calculate as less than 4% of the food product's protein dry weight. In some embodiments, the 50RNA content in the food product is better to calculate as less than 2 g per serving.

EXAMPLES.

The present disclosure will be more fully understood by reference to the following examples, which provide illustrative non-limiting aspects of the invention. It is understood that the invention described in this specification is not necessarily limited to the examples described in this section. ⁶⁰

Example 1 Chicken Skewers, 22.2% by Weight Dry Equivalent of Spent Brewers Yeast

65% by weight liquid spent brewers' yeast, containing 65 11% solids, containing 49.6% protein, and 15% by weight dried spent brewers yeast, containing 51.2% protein were 6

mixed with 20% by weight Soybean meal containing 50.4% protein and subjected to high moisture extrusion cooking at a temperature 150 C, pressure 20 bar, RPM 400 for 2 minutes.

Chicken-like skewers were prepared according to instructions: 0.5 kg of SBY-based meat cut into 25 mm square pieces. Marinated 2-6 hrs in a refrigerator (marinade: 2 tablespoons Miso paste, ¼ cup Lime juice, 1 teaspoon vegan fish sauce, 1 teaspoon shoyu, 2 teaspoons honey, 1 Jalapeno thin-sliced, 1 tablespoon toasted sesame oil). Vegetables for skewers: Crimini or shiitake mushrooms, sweet onion. Sweet pepper. Grilled on each side for 30 seconds.

The resulting product had a clean chicken-like taste with miso lime flavor and a muscle-like fibrous texture as shown in FIG. 1. The resulting product had 22.2% by weight dry equivalent of spent brewers yeast. 59.5% moisture content. 21.3% protein, and 0.072% RNA. The protein content was measured according to AACC 46-30 and AOAC 992.15. RNA extraction was performed. RNA quantification was measured via spectrophotometer and the residual RNA percentage was calculated based on the RNA concentration.

Example 2 Hop-Char Burger, 27.5% by Weight Dry Equivalent of Spent Brewers Yeast

70% by weight liquid concentrated spent brewers' yeast, containing 25% solids, containing 49.6% protein, and 10% by weight dried spent brewers yeast, containing 51.2% protein were mixed with 20% by weight Soybean meal containing 50.4% protein and subjected to high moisture extrusion cooking at a temperature 150 C, pressure 20 bar, RPM 400 for 2 minutes.

Hop-char burger was prepared according to instructions: 1 lb SBY-based meat, 6 oz cooked shiitake mushrooms, 1 tablespoon smoked paprika, 1 tablespoon honey, 1 tablespoon dark soy sauce, Irish moss equivalent of 2 small eggs, Salt & Pepper about 0.05% total weight. Meat processed in a food processor till broken down but not fully blended; mushrooms, spices, honey, soy sauce, herbs added and blended till ground beef consistency and transferred to a bowl to mix with the egg substitute till moisture content looks to match fresh ground beef. Patties formed 35 mm thick and cooked on the charbroiler.

The resulting product had a succulent mouthfeel, umami flavor, and texture of ground beef as shown in FIG. 2. The resulting product had 27.5% by weight dry equivalent of spent brewers yeast, 57.6% Moisture content, 23.9% protein, and 0.089% RNA. The protein content was measured according to AACC 46-30 and AOAC 992.15. RNA extraction was performed, RNA quantification was measured via spectrophotometer and the residual RNA percentage was calculated based on the RNA concentration.

> Example 3 Beef Stew, 30% by Weight Dry Equivalent of Spent Brewers' Yeast

30% by weight dried spent brewers yeast, containing 51.2% protein were mixed with 10% by weight Soy protein isolate, containing 90% protein and subjected to high moisture extrusion cooking at a temperature 150 C, pressure 20 bar, RPM 400 for 2 minutes.

Beef stew was prepared according to instructions: 1 lb SBY-based meat cut into approximate 25 mm triangles, 8 oz yellow onion, large dice, 8 oz carrot, 1" dice or oblique cut, 6 oz russet potatoes, peeled, large dice, ½ cup tamari (or soy sauce), 3½ cups room temperature water, 3 tablespoons raw sugar, 2 tablespoons curry powder, 3-3.5 oz prepared curry roux, 3 tablespoons neutral oil (grapeseed, avocado, canola). Marinade: combine tamari, sugar, curry powder, and I cup of water and whisk everything together until the sugar is dissolved. Sear SBY-based meat in a medium saucepan with 2 tablespoons of the oil for approximately 2 minutes per 5 side. Once it's browned, plunge meat into the marinade and let it stand 10 minutes at room temperature. Using the same pan, add the remaining oil and saute the carrots and onion over medium heat for about 3 minutes; stirring frequently, Add the potatoes, give it all a stir, and then crumble in your curry roux and then stir until it appears to be evenly distributed about 30 seconds. Add the remaining water (21/2 cups), stir, and bring the whole mixture to a boil. Once boiling, reduce heat to low, cover and simmer for about 15 15 minutes stirring frequently because it will want to stick. The potatoes and carrots should be slightly tender when poked with a knife at this point indicating that it's done. Serve with steamed rice.

The resulting product had a strong beefy umami flavor 20 and a muscle-like fibrous texture as shown in FIG. 3. The resulting product had 30% by weight dry equivalent of spent brewers' yeast, 60% Moisture content, 24.4% protein, and 0.099% RNA. The protein content was measured according to AACC 46-30 and AOAC 992.15. RNA extraction was 2 performed, RNA quantification was measured via spectrophotometer and the residual RNA percentage was calculated based on the RNA concentration.

Example 4 Pulled Pork, 40% by Weight Dry Equivalent of Spent Brewers Yeast

40% by weight dried spent brewers yeast, containing 51.2% protein were mixed with 10% by weight Soy protein isolate, containing 90% protein and subjected to high mois- 3 ture extrusion cooking at a temperature 150 C, pressure 20 bar, RPM 400 for 2 minutes.

Pulled pork lemongrass veggie bowl was prepared according to instructions: Ingredients to make 1 large bowl: 4 oz. SBY-based meat, shredded, I cup Rice noodles, 4 cooked, 1/2 cup Purple Cabbage, sliced, 1/Mango, sliced, 5 each Snap Peas, 4 leaves head Little Gems Lettuce, 5 thin slices Watermelon Radish. Sprinkle of Black Sesame & Lime wedges. Marinade & dressing to make 2 cups: ½ cup Lime Juice & Lime zest, 2 Tablespoons Soy Sauce, ½ cup 45 Fish Sauce, ¼ cup Maple Symp, ¼ Oil, 4-8 gloves Garlic, 2-3 stalks Lemon Grass, tender white parts only, chopped, 1 shallot, peeled & halved. To make marinade & dressing; Combine all ingredients in a blender or food processor. Season with Salt & pepper. Divide marinade in half. With 1/4 50 cup of marinade marinate shredded Planetarian meat in a small bowl for 5 minutes. To assemble bowl: Heat a cast iron pan until very hot. Sear shredded SBY-Based meat until caramelized and crispy. Adding more marinade if needed. In a large serving bowl arrange all the remaining fresh bowl 55 ingredients. Place your seared SBY-Based meat on top. Drizzle with a few tablespoons of the remaining marinade. Indulge and enjoy.

The resulting product had a pronounced meaty flavor and muscle-like fibers as shown in FIG. 4. The resulting product 60-5. Marson, G. V.; Saturno, R. P.; Comunian, T. A.; Consoli, had 40% by weight dry equivalent of spent brewers yeast. 50% moisture content, 29.5% protein, and 1.32% RNA. The protein content was measured according to AACC 46-30 and AOAC 992.15. RNA extraction was performed. RNA quantification was measured via spectrophotometer and the residual RNA percentage was calculated based on the RNA concentration.

8

One skilled in the art will recognize that the herein described methods, processes, systems, apparatus, components, devices, operations/actions, and objects, and the discussion accompanying them, are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific examples/embodiments set forth and the accompanying discussions are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components, devices, operations/ actions, and objects should not be taken as limiting. While the present disclosure provides descriptions of various specific aspects for the purpose of illustrating various aspects of the present disclosure and/or its potential applications, it is understood that variations and modifications will occur to those skilled in the art. Accordingly, the invention or inventions described herein should be understood to be at least as broad as they are claimed, and not as more narrowly defined by particular illustrative aspects provided herein.

TABLE 2

			Example L Chicken skewer	Example 2. Hop-char burger		Example 4. Pulled pork
Ĺ	Ist SBY	Liquid or concentrated SBY	65%n	70 %		
		Solids	11%	25%		
		Protein	49.6%	49.6%		
		SBY-based protein	4%	9%6		
	2nd SBY	Dry SBY	$15^{9}m$	10%	30%n	40%n
5	source					
		Solids	1080%n	100 %	[(H)%)	100°_{0}
		Protein content	51.2%	51.2%	51.2%	51.2%
		SBY-based protein	8%	•° •	1.5%	20%6
	Dry SBY equivalent		22.2%	27,5%	30,0%	40,0%n
LI.	2nd protein source	Soy isolate	20.0%	20,0%	10.0%	10 ⁴ 0
		Protein content	50.4%	50.4%	90.0%	90%
		Total protein	21.3%	23.9%	24,4%	29.5°
		Moisture	59,5%	57,6%	60,0%u	50° o
		RNA	0.072%	0.089%	0.099%	0.132%

REFERENCES

- 1. Gibson, D.; Dwivedi, B. Production of Meat Substitutes from Spent Brewers' Yeast and Soy Protein. Can. Inst. Food Technol. J. 1970, 3, 113-115.
- 2. Dietary Guidelines for Americans. Ninth edition, 2020 https://www.dietaryguidelines.gov
- 3. USDA Food Availability (Per Capita) Data System, 2021 https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/
- 4. J. C. Edozien et al. Effects of high levels of yeast feeding. on uric acid metabolism of young men. Nature vol 228. 1970
- L.: Machado, M. T. D. C.: Hubinger, M. D. Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Res. Int. 2020, 136, 109365
- 65 6. Canepa, A.; Pieber, M.; Romero, C.; Tohá, J. C. A method for large reduction of the nucleic acid content of yeast. Biotechnol. Bioeng, 1972, 14, 173-177.

10

30

45

 Trevelyan, W. E. Chemical methods for the reduction of the purine content of baker's yeast, a form of single-cell protein, J. Sci. Food Agric, 1976, 27, 225-230.
What is claimed is:

I. A meat substitute suitable for human consumption 5 comprising:

- at least 20% of a yeast by weight based on the dry weight of the meat substitute; and
- a ribonucleic acid (RNA) content less than 4% of the meat substitute's protein dry weight, and
- wherein the meat substitute is made by extruding a mix comprising a range of 40% to 80% of a liquid yeast by weight, inclusively, based upon the total weight of the mix.

2. The meat substitute of claim 1 wherein the liquid yeast 15 comprises spent brewers' yeast, spent distillers' yeast, surplus yeast from ethanol manufacturing, bakers' yeast, nutritional yeast, or a combination thereof.

3. The meat substitute of claim 1 further comprising a secondary protein ingredient, wherein the secondary protein 20 comprising: ingredient comprises vegetable protein, microbial protein, fungal protein, animal protein, or cultured protein, and wherein the secondary protein ingredient is in a native, concentrated, or isolated form, or a combination thereof.

4. The meat substitute of claim 1 wherein the liquid yeast 25 comprises 8 to 25% solids, inclusively, based on the total weight of the liquid yeast.

5. The meat substitute of claim 1 wherein the liquid yeast comprises 8 to 11% solids, inclusively, based on the total weight of the liquid yeast.

6. The meat substitute of claim 1 wherein the liquid yeast comprises 15 to 25% solids, inclusively, based on the total weight of the liquid yeast.

7. The meat substitute of claim 1 wherein mix comprises from 65 to 70% liquid yeast by weight, inclusively, based 35 upon the total weight of the mix.

8. The meat substitute of claim 1 wherein the liquid yeast comprises one or more of debittered, autolyzed, or hydrolyzed yeast.

9. The meat substitute of claim I wherein the extrusion 40 comprises a heat treatment and a pressure treatment.

10. A meat substitute suitable for human consumption comprising:

- at least 20% of a yeast by weight based on the dry weight of the meat substitute; and
- a ribonucleic acid (RNA) content less than 4% of the meat substitute's protein dry weight, and wherein the meat

substitute is made from a mix comprising a range of 40% to 80% of liquid yeast comprising spent brewers' yeast.

11. The meat substitute of claim 10 further comprising a secondary protein ingredient wherein the secondary protein ingredient comprises vegetable protein, microbial protein, fungal protein, animal protein, or cultured protein, and wherein the secondary protein ingredient is in a native, concentrated, or isolated form, or a combination thereof.

12. The meat substitute of claim 10 wherein the RNA content is less than 0.14% of the meat substitute's dry weight.

13. The meat substitute of claim 10 wherein the RNA content is greater than 0.07% and less than 0.14%, inclusively, of the meat substitute's dry weight.

14. The meat substitute of claim 10 wherein the extrusion comprises a heat treatment and a pressure treatment.

15. A meat substitute suitable for human consumption comprising:

- 10 to 20% yeast protein by weight, inclusively, based on the total dry weight of the meat substitute:
- at least 30% by weight of at least one secondary protein ingredient based on the total weight of the meat substitute; and
- a ribonucleic acid (RNA) content less than 4% of the meat substitute's protein dry weight.

16. The meat substitute of claim 15 wherein the source of the yeast protein comprises spent brewers' yeast, spent distillers' yeast, surplus yeast from ethanol manufacturing, bakers' yeast, nutritional yeast, or a combination thereof.

17. The meat substitute of claim 15 wherein the secondary protein ingredient comprises vegetable protein, microbial protein, fungal protein, animal protein, or cultured protein.

18. The meat substitute of claim 15 wherein the RNA content is less than 0.14% of the meat substitute's dry weight.

19. The meat substitute of claim 15 wherein the RNA content is greater than 0.07% and less than 0.14%, inclusively, of the meat substitute's dry weight.

20. The meat substitute of claim 16 wherein the meat substitute is made by co-extruding the source of the yeast protein and the second protein ingredient, wherein the co-extruding comprises a heat treatment and a pressure treatment.

* * * * *